Marhon et al., 2013 - Google Patents
Recurrent neural networksMarhon et al., 2013
View PDF- Document ID
- 17426722329041108839
- Author
- Marhon S
- Cameron C
- Kremer S
- Publication year
- Publication venue
- Handbook on neural information processing
External Links
Snippet
This chapter presents an introduction to recurrent neural networks for readers familiar with artificial neural networks in general, and multi-layer perceptrons trained with gradient descent algorithms (back-propagation) in particular. A recurrent neural network (RNN) is an …
- 230000000306 recurrent 0 title abstract description 89
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
- G06N3/082—Learning methods modifying the architecture, e.g. adding or deleting nodes or connections, pruning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/06—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons
- G06N3/063—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means
- G06N3/0635—Physical realisation, i.e. hardware implementation of neural networks, neurons or parts of neurons using electronic means using analogue means
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
- G06N3/049—Temporal neural nets, e.g. delay elements, oscillating neurons, pulsed inputs
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
- G06N3/0472—Architectures, e.g. interconnection topology using probabilistic elements, e.g. p-rams, stochastic processors
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/04—Architectures, e.g. interconnection topology
- G06N3/0454—Architectures, e.g. interconnection topology using a combination of multiple neural nets
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
- G06N3/08—Learning methods
- G06N3/086—Learning methods using evolutionary programming, e.g. genetic algorithms
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/12—Computer systems based on biological models using genetic models
- G06N3/126—Genetic algorithms, i.e. information processing using digital simulations of the genetic system
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/02—Computer systems based on specific mathematical models using fuzzy logic
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Marhon et al. | Recurrent neural networks | |
He et al. | Structured pruning for deep convolutional neural networks: A survey | |
Alaloul et al. | Data processing using artificial neural networks | |
Yadav et al. | An introduction to neural network methods for differential equations | |
Lin et al. | A delay damage model selection algorithm for NARX neural networks | |
Joshi et al. | A survey of fractional calculus applications in artificial neural networks | |
MXPA04004542A (en) | Pausible neural network with supervised and unsupervised cluster analysis. | |
Kumar et al. | Deep Learning as a Frontier of Machine Learning: A | |
CN112085198A (en) | Pulse neural network optimization method based on global feedback and local synapse plasticity | |
JP7284825B2 (en) | Legendre Memory Unit for Recurrent Neural Networks | |
WO2020196066A1 (en) | Neural network learning method, neural network generation method, learned device, portable terminal device, learning processing device, and computer program | |
Almomani et al. | A comparative study on spiking neural network encoding schema: implemented with cloud computing | |
Katte | Recurrent neural network and its various architecture types | |
Sathasivam et al. | Comparing neural networks: Hopfield network and RBF network | |
Schneidereit et al. | Solving ordinary differential equations using artificial neural networks-a study on the solution variance | |
Gupta et al. | Higher order neural networks: fundamental theory and applications | |
Ji et al. | Learning time delay systems with neural ordinary differential equations | |
Panjiar et al. | Soft Computing Technique in the Water Sector: Artificial Neural Network Approach | |
Munavalli et al. | Pattern recognition for data retrieval using artificial neural network | |
Kumar | Artificial neural networks for data mining | |
Khan et al. | Neural Networks Basics | |
Haider | Simplified neural networks algorithms for function approximation and regression boosting on discrete input spaces | |
Ballini et al. | Recurrent fuzzy neural computation: Modeling, learning and application | |
Shrestha | Supervised learning in multilayer spiking neural network | |
Barakova et al. | Symmetry: Between indecision and equality of choice |