Sasaki et al., 1993 - Google Patents
Selective MOVPE growth for photonic integration circuitsSasaki et al., 1993
- Document ID
- 17334683412480187698
- Author
- Sasaki T
- Mito I
- Publication year
- Publication venue
- Optical Fiber Communication Conference
External Links
Snippet
Semiconductor photonic integrated circuits (SPIC's) 1 have been developed with the attractive possibility of packaging cost reduction because the number of optical connection points between optical components will be greatly decreased. To take advantage of SPIC's …
- 238000002488 metal-organic chemical vapour deposition 0 title abstract description 6
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34306—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000nm, e.g. InP based 1300 and 1500nm lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semi-conductor body to guide the optical wave; Confining structures perpendicular to the optical axis, e.g. index- or gain-guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/22—Structure or shape of the semi-conductor body to guide the optical wave; Confining structures perpendicular to the optical axis, e.g. index- or gain-guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers having a ridge or stripe structure
- H01S5/223—Buried stripe structure
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/32—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures
- H01S5/323—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. alGaAs-laser, InP-based laser
- H01S5/3235—Structure or shape of the active region; Materials used for the active region comprising PN junctions, e.g. hetero- or double- heterostructures in AIIIBV compounds, e.g. alGaAs-laser, InP-based laser emitting light at a wavelength longer than 1000 nm, e.g. InP-based 1300 nm and 1500 nm lasers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/30—Structure or shape of the active region; Materials used for the active region
- H01S5/34—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers)
- H01S5/343—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
- H01S5/34313—Structure or shape of the active region; Materials used for the active region comprising quantum well, or supperlattice structures, e.g. single quantum well lasers (SQW lasers), multiple quantum well lasers (MQW lasers), graded index separate confinement hetrostructure lasers (GRINSCH lasers) in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer having only As as V-compound, e.g. AlGaAs, InGaAs
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
- H01S5/026—Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/10—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
- H01S5/12—Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feed-back lasers (DFB-lasers)
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/20—Structure or shape of the semi-conductor body to guide the optical wave; Confining structures perpendicular to the optical axis, e.g. index- or gain-guiding, stripe geometry, broad area lasers, gain tailoring, transverse or lateral reflectors, special cladding structures, MQW barrier reflection layers
- H01S5/2054—Methods of obtaining the confinement
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S2301/00—Functional characteristics
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L33/00—Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5680411A (en) | Integrated monolithic laser-modulator component with multiple quantum well structure | |
JP3285426B2 (en) | Semiconductor optical integrated device and method of manufacturing the same | |
EP0661782B1 (en) | A semiconductor laser | |
EP0896406B1 (en) | Semiconductor laser device, optical communication system using the same, and method for producing compound semiconductor | |
US6162655A (en) | Method of fabricating an expanded beam optical waveguide device | |
JP2842292B2 (en) | Semiconductor optical integrated device and manufacturing method | |
EP0846967B1 (en) | Optical semiconductor device and method of fabricating the same | |
Coleman et al. | Progress in InGaAs-GaAs selective-area MOCVD toward photonic integrated circuits | |
JPS6215875A (en) | Semiconductor device and manufacture thereof | |
EP0680119B1 (en) | Fabrication process for semiconductor optical device | |
US5847415A (en) | Light emitting device having current blocking structure | |
US5636237A (en) | Semiconductor laser device which makes it possible to realize high-speed modulation | |
Sakata et al. | All selective MOVPE grown BH-LDs fabricated by the novel self-alignment process | |
Uomi et al. | Ultralow threshold 1.3-/spl mu/m InGaAsP-InP compressive-strained multiquantum-well monolithic laser array for parallel high-density optical interconnects | |
US20050185689A1 (en) | Optoelectronic device having a Discrete Bragg Reflector and an electro-absorption modulator | |
Sasaki et al. | Selective MOVPE growth for photonic integration circuits | |
Kishino et al. | Fabrication and lasing properties of mesa substrate buried heterostructure GaInAsP/InP lasers at 1.3 µm wavelength | |
Binsma et al. | Characterization of butt-joint InGaAsP waveguides and their application to 1310 nm DBR-type MQW gain-clamped semiconductor optical amplifiers | |
Nelson et al. | High-performance DC-PBH lasers at 1.52 μm by a hybrid MOVPE/LPE process | |
JP2002026461A (en) | Optical semiconductor device, its manufacturing method, optical device module with optical semiconductor device and optical communication apparatus | |
EP0273730B1 (en) | Method of fabricating semiconductor laser device | |
Bouadma et al. | GaAs: GaAlAs ridge waveguide lasers and their monolithic integration using the ion beam etching process | |
Yang et al. | Planar GaAs-AlGaAs MQW transverse junction ridge waveguide lasers using shallow zinc diffusion | |
Aoki et al. | New photonic device integration by selective‐area MOVPE and its application to optical modulator/laser integration | |
JP3251615B2 (en) | Semiconductor laser device |