Peng et al., 2006 - Google Patents
Conjugated alternating copolymers of fluorene and 2-pyridine-4-ylidenemalononitrile: synthesis, characterization and electroluminescent propertiesPeng et al., 2006
- Document ID
- 17326510376345232105
- Author
- Peng Q
- Kang E
- Neoh K
- Xiao D
- Zou D
- Publication year
- Publication venue
- Journal of Materials Chemistry
External Links
Snippet
A new series of light-emitting conjugated copolymers based on fluorene were synthesized via the Pd-catalyzed Suzuki coupling reaction. The copolymers were characterized by FT-IR, NMR, and elemental analysis. All the copolymers were readily soluble in common organic …
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N Fluorene   C1=CC=C2CC3=CC=CC=C3C2=C1 0 title abstract description 10
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0035—Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
- H01L51/0038—Poly-phenylenevinylene and derivatives
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0035—Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
- H01L51/0039—Polyeflurorene and derivatives
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0043—Copolymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/124—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0062—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0059—Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/14—Macromolecular compounds
- C09K2211/1441—Heterocyclic
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K11/00—Luminescent, e.g. electroluminescent, chemiluminescent materials
- C09K11/06—Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K2211/00—Chemical nature of organic luminescent or tenebrescent compounds
- C09K2211/10—Non-macromolecular compounds
- C09K2211/1018—Heterocyclic compounds
- C09K2211/1025—Heterocyclic compounds characterised by ligands
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/31—Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
- C08G2261/314—Condensed aromatic systems, e.g. perylene, anthracene or pyrene
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2251/00—Indexing scheme relating to organic semiconductor devices covered by group H01L51/00
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Synthesis and characterization of new fluorene-acceptor alternating and random copolymers for light-emitting applications | |
Cho et al. | Saturated and efficient red light-emitting fluorene-based alternating polymers containing phenothiazine derivatives | |
US7767785B2 (en) | Conjugated polymers, their preparation and use thereof | |
Li et al. | Synthesis and properties of novel poly (p-phenylenevinylene) copolymers for near-infrared emitting diodes | |
Huang et al. | Synthesis, photophysics, and electroluminescence of high-efficiency saturated red light-emitting polyfluorene-based polyelectrolytes and their neutral precursors | |
Huang et al. | High‐Efficiency and Color Stable Blue‐Light‐Emitting Polymers and Devices | |
Pei et al. | The synthesis and characterization of an efficient green electroluminescent conjugated polymer: poly [2, 7-bis (4-hexylthienyl)-9, 9-dihexylfluorene] | |
Lin et al. | Novel fluorene-based light-emitting copolymers containing cyanophenyl pendants and carbazole-triphenylamines: Synthesis, characterization and their PLED application | |
Gopikrishna et al. | Synthesis and characterization of color tunable, highly electroluminescent copolymers of polyfluorene by incorporating the N-phenyl-1, 8-naphthalimide moiety into the main chain | |
Song et al. | White polymer light emitting diode materials introducing dendritic quinoxaline derivative: Synthesis, optical and electroluminescent properties | |
Yang et al. | Improved electroluminescence efficiency of polyfluorenes by simultaneously incorporating dibenzothiophene-S, S-dioxide unit in main chain and oxadiazole moiety in side chain | |
Park et al. | Polymeric light emitting properties and structural relationships of fluorene-based conjugated copolymers containing various hole transporting derivatives | |
Xu et al. | Blue light-emitting polymers containing ortho-linking carbazole-based benzothiophene-S, S-dioxide derivative | |
Peng et al. | Conjugated alternating copolymers of fluorene and 2-pyridine-4-ylidenemalononitrile: synthesis, characterization and electroluminescent properties | |
Lim et al. | Improved EL efficiency of fluorene‐thieno [3, 2‐b] thiophene‐based conjugated copolymers with hole‐transporting or electron‐transporting units in the main chain | |
JP5778030B2 (en) | Fluorine-crosslinked aggregates for optoelectronic applications | |
Peng et al. | Novel light-emitting polymers derived from fluorene and maleimide | |
Zhang et al. | Synthesis and properties of novel electrophosphorescent conjugated polyfluorenes based on aminoalkyl-fluorene and bipyridine with rhenium (I) complexes | |
Peng et al. | Novel efficient green electroluminescent conjugated polymers based on fluorene and triarylpyrazoline for light-emitting diodes | |
Liu et al. | Highly efficient red electroluminescent polymers with dopant/host system and molecular dispersion feature: polyfluorene as the host and 2, 1, 3-benzothiadiazole derivatives as the red dopant | |
Liao et al. | High-performance poly (2, 3-diphenyl-1, 4-phenylene vinylene)-based polymer light-emitting diodes by blade coating method | |
Peng et al. | Novel supramolecular polymers based on Zinc‐salen chromophores for efficient light‐emitting diodes | |
Liu et al. | Novel aminoalkyl-functionalized blue-, green-and red-emitting polyfluorenes | |
Jin et al. | Enhancement of electroluminescence properties of red diketopyrrolopyrrole-doped copolymers by oxadiazole and carbazole units as pendants | |
Kim et al. | Efficient poly (p-phenylenevinylene) derivative with 1, 2-diphenyl-2′-cyanoethene for single layer light-emitting diodes |