Biondo et al., 2021 - Google Patents
Advantages of simultaneous in situ multispecies detection for portable emission measurement applicationsBiondo et al., 2021
View PDF- Document ID
- 17359971242585171909
- Author
- Biondo L
- Gerken H
- Illmann L
- Steinhaus T
- Beidl C
- Dreizler A
- Wagner S
- Publication year
- Publication venue
- SAE International Journal of Sustainable Transportation, Energy, Environment, & Policy
External Links
Snippet
In this work, an in situ multispecies portable emission measurement system (PEMS) is presented. The system is based on tunable diode laser absorption spectroscopy (TDLAS) and is capable of measuring tailpipe emissions without the necessity of online calibration. It …
- 238000005259 measurement 0 title abstract description 18
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
- G01N21/3504—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light for analysing gases, e.g. multi-gas analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/39—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using tunable lasers
- G01N2021/396—Type of laser source
- G01N2021/399—Diode laser
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
- G01N21/3577—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light for analysing liquids, e.g. polluted water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01M—TESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING STRUCTURES OR APPARATUS NOT OTHERWISE PROVIDED FOR
- G01M15/00—Testing of engines
- G01M15/04—Testing of internal-combustion engines, e.g. diagnostic testing of piston engines
- G01M15/10—Testing of internal-combustion engines, e.g. diagnostic testing of piston engines by monitoring exhaust gases or combustion flame
- G01M15/102—Testing of internal-combustion engines, e.g. diagnostic testing of piston engines by monitoring exhaust gases or combustion flame by monitoring exhaust gases
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N2021/1793—Remote sensing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/55—Specular reflectivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/28—Investigating the spectrum
- G01J3/42—Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
- G01J3/433—Modulation spectrometry; Derivative spectrometry
- G01J3/4338—Frequency modulated spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/02—Details
- G01J3/0205—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
- G01J3/024—Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using means for illuminating a slit efficiently (e.g. entrance slit of a spectrometer or entrance face of fiber)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/26—Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
- G01N33/28—Oils, i.e. hydrocarbon liquids
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | A potential remote sensor of CO in vehicle exhausts using 2.3 µm diode lasers | |
US5831267A (en) | Method and apparatus for remote measurement of exhaust gas | |
EP1425576B1 (en) | Exhaust opacity measuring device | |
CN1439880A (en) | Method and apparatus for real time remote determining multiple pollutants in vehicle exhaust | |
Daham et al. | Application of a portable FTIR for measuring on-road emissions | |
Biondo et al. | Advantages of simultaneous in situ multispecies detection for portable emission measurement applications | |
Gautam et al. | Measurement of in-use, on-board emissions from heavy-duty diesel vehicles: Mobile emissions measurement system | |
CN109781648A (en) | A kind of motor-vehicle tail-gas remote sensing detection system | |
Dooly et al. | On-board monitoring of vehicle exhaust emissions using an ultraviolet optical fibre based sensor | |
Bauke et al. | Optical sensor system for time-resolved quantification of methane concentrations: Validation measurements in a rapid compression machine | |
Onishi et al. | Development of On-Board NH 3 and N 2 O Analyzer Utilizing Mid-Infrared Laser Absorption Spectroscopy | |
Barrass et al. | Near-infrared tunable diode laser spectrometer for the remote sensing of vehicle emissions | |
Li et al. | Simultaneous Measurement of Multiparameter of Diesel Engine Exhaust Based on Mid-infrared Laser Absorption Spectroscopy | |
Lenaers et al. | The realisation of an on-board emission measuring system serving as a R&D tool for ultra low emitting vehicles | |
Stiborek et al. | A mid-infrared laser absorption sensor for gas temperature and carbon monoxide mole fraction measurements at 15 KHz in engine-out gasoline vehicle exhaust | |
Shade | A performance evaluation of the MEMS: An on-road emissions measurement system study | |
Sur et al. | Laser-Based In-Exhaust Gas Sensor for On-Road Vehicles | |
Bauke et al. | Quantitative, time-resolved detection of CH 4 concentrations in flows for injection analysis in CNG engines using IR absorption | |
Schwarm et al. | Cycle-resolved emissions analysis of polyfuel reciprocating engines via in-situ laser absorption spectroscopy | |
Dooly et al. | Optical sensing of hazardous exhaust emissions using a UV based extrinsic sensor | |
Eichmann | Precise Exhaust Gas Measurement Based on Laser Spectroscopy | |
Kaźmierczak et al. | Method of verifying the emission level of the exhaust components of a special vehicle in relation to EURO III standard in road conditions | |
Kondo et al. | Development Of On-board Multi-component Gas Analyzer Toward Euro 7 | |
Degner et al. | Low-cost sensor for online detection of harmful diesel combustion gases in UV-VIS region | |
Pondicherry | Development of an Activity-based Windowing Approach to Evaluate Real-World NOx Emissions from Modern Medium and Heavy-Duty Diesel Trucks |