Dvornikov et al., 1997 - Google Patents
Materials and systems for two photon 3-D ROM devicesDvornikov et al., 1997
View PDF- Document ID
- 17219276170908653929
- Author
- Dvornikov A
- Cokgor I
- Wang M
- McCormick F
- Esener S
- Rentzepis P
- Publication year
- Publication venue
- IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A
External Links
Snippet
The methods and systems used for storing and accessing information in three dimensions by means of two-photon absorption are described. The materials into which the information is stored are organic molecules dispersed in polymer matrices, which change structure and …
- 239000000463 material 0 title abstract description 34
Classifications
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/245—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing a polymeric component
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/244—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only
- G11B7/246—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising organic materials only containing dyes
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/241—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material
- G11B7/242—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers
- G11B7/251—Record carriers characterised by shape, structure or physical properties, or by the selection of the material characterised by the selection of the material of recording layers comprising inorganic materials dispersed in an organic matrix
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/24—Record carriers characterised by shape, structure or physical properties, or by the selection of the material
- G11B7/2407—Tracks or pits; Shape, structure or physical properties thereof
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/004—Recording, reproducing or erasing methods; Read, write or erase circuits therefor
- G11B7/0065—Recording, reproducing or erasing by using optical interference patterns, e.g. holograms
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/002—Recording, reproducing or erasing systems characterised by the shape or form of the carrier
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11C—STATIC STORES
- G11C13/00—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00
- G11C13/04—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using optical elements using other beam accessed elements, e.g. electron, ion beam
- G11C13/042—Digital stores characterised by the use of storage elements not covered by groups G11C11/00, G11C23/00 - G11C25/00 using optical elements using other beam accessed elements, e.g. electron, ion beam using information stored in the form of an interference pattern
-
- G—PHYSICS
- G11—INFORMATION STORAGE
- G11B—INFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
- G11B7/00—Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
- G11B7/007—Arrangement of the information on the record carrier, e.g. form of tracks, actual track shape, e.g. wobbled, or cross-section, e.g. v-shaped; Sequential information structures, e.g. sectoring or header formats within a track
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/64—Fluorescence; Phosphorescence
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6483735B1 (en) | Two-photon, three-or four-dimensional, color radiation memory | |
US6950382B2 (en) | Method for thermally erasing information stored in an aluminum oxide data storage medium | |
JP2810542B2 (en) | Recording / reproducing method of three-dimensional optical data | |
Dvornikov et al. | Materials and systems for two photon 3-D ROM devices | |
US5470690A (en) | Optical information storage on a bacteriorhodopsin - containing film | |
WO1999023650A1 (en) | Multi-layered photochromic optical data disk | |
US6432610B1 (en) | Dye precursor molecules chemically reactive with the light-altered form of light-sensitive molecules to form stable fluorescent dye, particularly for optical memories including two-photon three-dimensional optical memories | |
US7964333B1 (en) | FRET-based two photon three dimensional optical data storage | |
US6151287A (en) | Optical mass storage device, with data recording light-sensitive layer | |
JP4241726B2 (en) | Bit-type optical data storage using aluminum oxide single crystal media | |
Kawata | Photorefractive optics in three-dimensional digital memory | |
US20030073031A1 (en) | Dye precursor molecules chemically reactive with the light-altered form of light-sensitive molecules to form stable fluorescent dye, particularly for optical memories including two-photon three-dimensional optical memories | |
US7190649B2 (en) | Bit-wise optical data storage utilizing aluminum oxide single crystal medium | |
JP4820400B2 (en) | Bit-type optical data storage using aluminum oxide single crystal media | |
Walker et al. | Progress in two-photon 3D optical data storage | |
Ford et al. | Write/read performance in two-photon 3D memories | |
McCormick et al. | 3-D data storage in two-photon photochromic optical memories | |
Ford et al. | Three-dimensional two-photon memory materials and systems | |
JP2718496B2 (en) | Optical memory device | |
Ryan | Three dimensional optical data storage in polymeric systems | |
Akselrod et al. | Progress in bit-wise volumetric optical storage using aluminum oxide single crystal media | |
Dvornikov et al. | Studies of new nondestructive read-out media for two-photon 3D high-density storage | |
Dvornikov et al. | Advances in 3D two-photon optical storage devices | |
Qi et al. | Experimental study on reading and writing characteristics of three-wavelength photochromic storage material | |
Liang et al. | Nonlinear Materials and Processes for Electronic Devices and 3D Optical Storage Memory Applications |