Nothing Special   »   [go: up one dir, main page]

Weaver Adams et al., 2023 - Google Patents

Doppler Light Detection and Ranging-Aided Inertial Navigation and Trajectory Recovery

Weaver Adams et al., 2023

View PDF
Document ID
1714652739703699799
Author
Weaver Adams D
Peck C
Majji M
Publication year
Publication venue
Journal of Guidance, Control, and Dynamics

External Links

Snippet

A sensor fusion approach to terrain relative navigation is proposed in this paper. Sensor data from Global Position System (GPS), Inertial Navigation System (INS), and Doppler light detection and ranging (LIDAR) provide a relative state estimate through a novel …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/10Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration
    • G01C21/12Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning
    • G01C21/16Navigation; Navigational instruments not provided for in preceding groups by using measurements of speed or acceleration executed aboard the object being navigated; Dead reckoning by integrating acceleration or speed, i.e. inertial navigation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems
    • G01S19/38Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system
    • G01S19/39Determining a navigation solution using signals transmitted by a satellite radio beacon positioning system the satellite radio beacon positioning system transmitting time-stamped messages, e.g. GPS [Global Positioning System], GLONASS [Global Orbiting Navigation Satellite System] or GALILEO
    • G01S19/42Determining position
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in preceding groups
    • G01C21/20Instruments for performing navigational calculations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C11/00Photogrammetry or videogrammetry, e.g. stereogrammetry; Photographic surveying
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/94Radar or analogous systems specially adapted for specific applications for terrain-avoidance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C25/00Manufacturing, calibrating, cleaning, or repairing instruments and devices referred to in the preceding groups
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. correcting range migration errors
    • G01S13/9035Particular SAR processing techniques not provided for elsewhere, e.g. squint mode, doppler beam-sharpening mode, spotlight mode, bistatic SAR, inverse SAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course or altitude of land, water, air, or space vehicles, e.g. automatic pilot
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions

Similar Documents

Publication Publication Date Title
Yu et al. Observability-based beacon configuration optimization for Mars entry navigation
Savage Strapdown inertial navigation integration algorithm design part 2: Velocity and position algorithms
Filipe et al. Extended Kalman filter for spacecraft pose estimation using dual quaternions
Mourikis et al. Vision-aided inertial navigation for spacecraft entry, descent, and landing
Chatfield Fundamentals of high accuracy inertial navigation
Markley Attitude error representations for Kalman filtering
US20120022784A1 (en) Navigation filter for a navigation system using terrain correlation
Johnson et al. Combining stereo vision and inertial navigation for automated aerial refueling
Gebre-Egziabher et al. MAV attitude determination by vector matching
Raol et al. On the orbit determination problem
Shou Orbit propagation and determination of low earth orbit satellites
Razgus et al. Relative navigation in asteroid missions using dual quaternion filtering
Xu et al. Autonomous navigation based on sequential images for planetary landing in unknown environments
Restrepo et al. Next-generation nasa hazard detection system development
Teil et al. Centroid and apparent diameter optical navigation on mars orbit
Xu et al. Landmark-based autonomous navigation for pinpoint planetary landing
Goh et al. Survey of global-positioning-system-based attitude determination algorithms
Ward et al. Design and analysis of descent-to-landing navigation incorporating terrain effects
Dor et al. AstroSLAM: Autonomous Monocular Navigation in the Vicinity of a Celestial Small Body--Theory and Experiments
Chen et al. Gravity gradient tensor eigendecomposition for spacecraft positioning
Park et al. Analysis of geometric effects on integrated inertial/vision for lunar descent navigation
Andreis et al. Autonomous Vision-Based Algorithm for Interplanetary Navigation
Weaver Adams et al. Doppler Light Detection and Ranging-Aided Inertial Navigation and Trajectory Recovery
Benziane Attitude estimation & control of autonomous aerial vehicles
Fitzgerald Autonomous Spacecraft Orbit Determination from Incident Light Intensity via Eclipse Transient Timing