Gascoin et al., 2007 - Google Patents
High temperature thermoelectric properties of Mo3Sb7− xTex for x= 1.6 and 1.5Gascoin et al., 2007
- Document ID
- 1704811638059216263
- Author
- Gascoin F
- Rasmussen J
- Snyder G
- Publication year
- Publication venue
- Journal of alloys and compounds
External Links
Snippet
We have prepared and measured the electrical resistivity, Seebeck coefficient and thermal conductivity of the titled compounds in the 300–1050K temperature range. The results show that both members of the solid solution are heavily doped semiconductor with a figure of …
- 239000000463 material 0 abstract description 29
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/12—Selection of the material for the legs of the junction
- H01L35/14—Selection of the material for the legs of the junction using inorganic compositions
- H01L35/16—Selection of the material for the legs of the junction using inorganic compositions comprising tellurium or selenium or sulfur
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/12—Selection of the material for the legs of the junction
- H01L35/14—Selection of the material for the legs of the junction using inorganic compositions
- H01L35/18—Selection of the material for the legs of the junction using inorganic compositions comprising arsenic or antimony or bismuth, e.g. AIIIBV compounds
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/12—Selection of the material for the legs of the junction
- H01L35/14—Selection of the material for the legs of the junction using inorganic compositions
- H01L35/22—Selection of the material for the legs of the junction using inorganic compositions comprising compounds containing boron, carbon, oxygen or nitrogen or germanium or silicon, e.g. superconductors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/28—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only
- H01L35/32—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only characterised by the structure or configuration of the cell or thermo-couple forming the device including details about, e.g., housing, insulation, geometry, module
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/12—Selection of the material for the legs of the junction
- H01L35/14—Selection of the material for the legs of the junction using inorganic compositions
- H01L35/20—Selection of the material for the legs of the junction using inorganic compositions comprising metals only
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/02—Details
- H01L35/04—Structural details of the junction; Connection of leads
- H01L35/08—Structural details of the junction; Connection of leads non-detachable, e.g. cemented, sintered, soldered, e.g. thin films
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L39/00—Devices using superconductivity; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
- H01L39/02—Details
- H01L39/12—Details characterised by the material
- H01L39/125—Ceramic materials
- H01L39/126—Ceramic materials comprising copper oxide
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/12—Selection of the material for the legs of the junction
- H01L35/26—Selection of the material for the legs of the junction using compositions changing continuously or discontinuously inside the material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/34—Processes or apparatus peculiar to the manufacture or treatment of these devices or of parts thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L35/00—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L35/28—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only
- H01L35/30—Thermo-electric devices comprising a junction of dissimilar materials, i.e. exhibiting Seebeck or Peltier effect with or without other thermo-electric effects or thermomagnetic effects; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof operating with Peltier or Seebeck effect only characterised by the heat-exchanging means at the junction
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L39/00—Devices using superconductivity; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof
- H01L39/14—Permanent superconductor devices
- H01L39/141—Permanent superconductor devices comprising metal borides, e.g. MgB2
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L31/00—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof
- H01L31/0248—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
- H01L31/0256—Semiconductor devices sensitive to infra-red radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus peculiar to the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
- H01L31/0264—Inorganic materials
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Gascoin et al. | High temperature thermoelectric properties of Mo3Sb7− xTex for x= 1.6 and 1.5 | |
Imasato et al. | Exceptional thermoelectric performance in Mg 3 Sb 0.6 Bi 1.4 for low-grade waste heat recovery | |
Serrano-Sánchez et al. | Record Seebeck coefficient and extremely low thermal conductivity in nanostructured SnSe | |
Chauhan et al. | Compositional tuning of ZrNiSn half-Heusler alloys: Thermoelectric characteristics and performance analysis | |
Day et al. | Evaluating the potential for high thermoelectric efficiency of silver selenide | |
Schmitt et al. | Resolving the true band gap of ZrNiSn half-Heusler thermoelectric materials | |
Wölfing et al. | High performance thermoelectric Tl 9 BiTe 6 with an extremely low thermal conductivity | |
Mori et al. | Thermoelectric properties of homologous p-and n-type boron-rich borides | |
Lue et al. | Hole-doping effect on the thermoelectric properties and electronic structure of CoSi | |
US20020176815A1 (en) | Thermoelectric devices based on materials with filled skutterudite structutres | |
Zhou et al. | Promising thermoelectric properties in AgxMo9Se11 compounds (3.4≤ x≤ 3.9) | |
Singh et al. | Charge carriers modulation and thermoelectric performance of intrinsically p-type Bi2Te3 by Ge doping | |
Gascoin et al. | CdI2 structure type as potential thermoelectric materials: Synthesis and high temperature thermoelectric properties of the solid solution TiSxSe2− x | |
Ciesielski et al. | High-temperature power factor of half-heusler phases RENiSb (RE= sc, Dy, Ho, Er, Tm, Lu) | |
Martin et al. | Thermoelectric properties of silicon-germanium type I clathrates | |
Rogl et al. | New p-and n-type skutterudites with ZT> 1 and nearly identical thermal expansion and mechanical properties | |
KR101663183B1 (en) | Thermoelectric materials, and thermoelectric module and thermoelectric device comprising same | |
US6207888B1 (en) | Semiconductor materials with skutterudite type crystal lattice structures optimized for selected thermoelectric properties and methods of preparation | |
Fang et al. | A new defective 19-electron TiPtSb half-Heusler thermoelectric compound with heavy band and low lattice thermal conductivity | |
Jovovic et al. | Doping effects on the thermoelectric properties of AgSbTe 2 | |
Kazem et al. | Thermoelectric properties of Zintl antimonides | |
Hu et al. | The effect of Ni/Sn doping on the thermoelectric properties of BiSbTe polycrystalline bulks | |
Yang et al. | Enhancement in thermoelectric properties of ZrNiSn-based alloys by Ta doping and Hf substitution | |
Prado-Gonjal et al. | Extra-low thermal conductivity in unfilled CoSb3-δ skutterudite synthesized under high-pressure conditions | |
Wang et al. | Enhancement of thermoelectric properties in n-type NbCoSn half-Heusler compounds via Ta alloying |