Nothing Special   »   [go: up one dir, main page]

Remez et al., 2017 - Google Patents

Deep convolutional denoising of low-light images

Remez et al., 2017

View PDF
Document ID
16936611885878312155
Author
Remez T
Litany O
Giryes R
Bronstein A
Publication year
Publication venue
arXiv preprint arXiv:1701.01687

External Links

Snippet

Poisson distribution is used for modeling noise in photon-limited imaging. While canonical examples include relatively exotic types of sensing like spectral imaging or astronomy, the problem is relevant to regular photography now more than ever due to the booming market …
Continue reading at arxiv.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20056Discrete and fast Fourier transform, [DFT, FFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/001Image restoration
    • G06T5/002Denoising; Smoothing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20064Wavelet transform [DWT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20172Image enhancement details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/001Image restoration
    • G06T5/003Deblurring; Sharpening
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20112Image segmentation details
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20016Hierarchical, coarse-to-fine, multiscale or multiresolution image processing; Pyramid transform
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/007Dynamic range modification
    • G06T5/008Local, e.g. shadow enhancement
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T5/00Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image
    • G06T5/20Image enhancement or restoration, e.g. from bit-mapped to bit-mapped creating a similar image by the use of local operators
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T3/00Geometric image transformation in the plane of the image, e.g. from bit-mapped to bit-mapped creating a different image
    • G06T3/40Scaling the whole image or part thereof
    • G06T3/4084Transform-based scaling, e.g. FFT domain scaling
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations

Similar Documents

Publication Publication Date Title
Remez et al. Deep convolutional denoising of low-light images
Li et al. Efficient and interpretable deep blind image deblurring via algorithm unrolling
Cai et al. Data-driven tight frame construction and image denoising
Gu et al. A brief review of image denoising algorithms and beyond
Lefkimmiatis et al. Poisson image reconstruction with Hessian Schatten-norm regularization
Arjomand Bigdeli et al. Deep mean-shift priors for image restoration
Brifman et al. Turning a denoiser into a super-resolver using plug and play priors
Zhang et al. High-quality image restoration using low-rank patch regularization and global structure sparsity
Matakos et al. Accelerated edge-preserving image restoration without boundary artifacts
Shao et al. From heuristic optimization to dictionary learning: A review and comprehensive comparison of image denoising algorithms
Remez et al. Deep class-aware image denoising
Liu et al. Automatic estimation and removal of noise from a single image
Dobrosotskaya et al. A wavelet-Laplace variational technique for image deconvolution and inpainting
Dong et al. Image reconstruction with locally adaptive sparsity and nonlocal robust regularization
Wang et al. Nonlocal spectral prior model for low-level vision
CN106709877B (en) A kind of image deblurring method based on multi-parameter canonical Optimized model
Quan et al. Nonblind image deblurring via deep learning in complex field
Dong et al. Blur kernel estimation via salient edges and low rank prior for blind image deblurring
Yun et al. Linearized proximal alternating minimization algorithm for motion deblurring by nonlocal regularization
Shahdoosti et al. Combined ripplet and total variation image denoising methods using twin support vector machines
Fang et al. Text image deblurring using kernel sparsity prior
Zhao et al. Deep pyramid generative adversarial network with local and nonlocal similarity features for natural motion image deblurring
Umer et al. Deep super-resolution network for single image super-resolution with realistic degradations
Liu et al. Blind image deblurring via local maximum difference prior
Ge et al. Blind image deconvolution via salient edge selection and mean curvature regularization