Jiao et al., 2018 - Google Patents
An advanced lithium ion battery based on a high quality graphitic graphene anode and a Li [Ni0. 6Co0. 2Mn0. 2] O2 cathodeJiao et al., 2018
- Document ID
- 16916242077003587838
- Author
- Jiao L
- Liu Z
- Sun Z
- Wu T
- Gao Y
- Li H
- Li F
- Niu L
- Publication year
- Publication venue
- Electrochimica Acta
External Links
Snippet
In this paper, a lithium-ion full battery based on a high quality graphitized graphene anode and a high capacity, high rate Li [Ni 0.6 Co 0.2 Mn 0.2] O 2 cathode was reported. After carefully designing the cell and improving the initial Coulombic efficiency of the anode …
- OKTJSMMVPCPJKN-UHFFFAOYSA-N carbon   [C] 0 title abstract description 53
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage for electromobility
- Y02T10/7005—Batteries
- Y02T10/7011—Lithium ion battery
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Hong et al. | Revealing the correlation between structural evolution and Li+ diffusion kinetics of nickel-rich cathode materials in Li-ion batteries | |
Takami et al. | High-energy, fast-charging, long-life lithium-ion batteries using TiNb2O7 anodes for automotive applications | |
Yang et al. | Effect of niobium doping on the structure and electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode materials for lithium ion batteries | |
Wang et al. | Effect of amorphous FePO4 coating on structure and electrochemical performance of Li1. 2Ni0. 13Co0. 13Mn0. 54O2 as cathode material for Li-ion batteries | |
Yi et al. | Advanced electrochemical properties of Mo-doped Li 4 Ti 5 O 12 anode material for power lithium ion battery | |
Wang et al. | Synthesize and electrochemical characterization of Mg-doped Li-rich layered Li [Li0. 2Ni0. 2Mn0. 6] O2 cathode material | |
Jan et al. | Improvement of electrochemical performance of LiNi0. 8Co0. 1Mn0. 1O2 cathode material by graphene nanosheets modification | |
Mao et al. | Mitigating the voltage fading and lattice cell variations of O3-NaNi0. 2Fe0. 35Mn0. 45O2 for high performance Na-ion battery cathode by Zn doping | |
Li et al. | LiNi 1/3 Co 1/3 Mn 1/3 O 2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries | |
Noh et al. | Comparison of the structural and electrochemical properties of layered Li [NixCoyMnz] O2 (x= 1/3, 0.5, 0.6, 0.7, 0.8 and 0.85) cathode material for lithium-ion batteries | |
Hwang et al. | Effect of nickel and iron on structural and electrochemical properties of O3 type layer cathode materials for sodium-ion batteries | |
Santhanam et al. | High rate cycling performance of Li1. 05Ni1/3Co1/3Mn1/3O2 materials prepared by sol–gel and co-precipitation methods for lithium-ion batteries | |
Liu et al. | A new rechargeable lithium-ion battery with a xLi2MnO3·(1− x) LiMn0. 4Ni0. 4Co0. 2O2 cathode and a hard carbon anode | |
Jiao et al. | An advanced lithium ion battery based on a high quality graphitic graphene anode and a Li [Ni0. 6Co0. 2Mn0. 2] O2 cathode | |
Wang et al. | Enhanced electrochemical performance of Li-rich cathode Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 by surface modification with lithium ion conductor Li3PO4 | |
Lin et al. | LiMn2O4 nanoparticles anchored on graphene nanosheets as high-performance cathode material for lithium-ion batteries | |
Liu et al. | Fluorine doping and Al2O3 coating Co-modified Li [Li0. 20Ni0. 133Co0. 133Mn0. 534] O2 as high performance cathode material for lithium-ion batteries | |
Qiu et al. | Al2O3 coated LiNi1/3Co1/3Mn1/3O2 cathode material by sol–gel method: preparation and characterization | |
Huang et al. | Structural and electrochemical characterization of Mg-doped Li1. 2 [Mn0. 54Ni0. 13Co0. 13] O2 cathode material for lithium ion batteries | |
Uzun et al. | Effect of MnO2 coating on layered Li (Li0. 1Ni0. 3Mn0. 5Fe0. 1) O2 cathode material for Li-ion batteries | |
Quyen et al. | Carbon coated NaLi0. 2Mn0. 8O2 as a superb cathode material for sodium ion batteries | |
Liu et al. | Influence of Na-substitution on the structure and electrochemical properties of layered oxides K0. 67Ni0. 17Co0. 17Mn0. 66O2 cathode materials | |
Wu et al. | Alleviating structural degradation of nickel-rich cathode material by eliminating the surface Fm3¯ m phase | |
Pan et al. | Effect of molybdenum substitution on electrochemical performance of Li [Li0. 2Mn0. 54Co0. 13Ni0. 13] O2 cathode material | |
Ding et al. | Preparation and performance characterization of AlF3 as interface stabilizer coated Li1. 24Ni0. 12Co0. 12Mn0. 56O2 cathode for lithium-ion batteries |