Yook et al., 2010 - Google Patents
Recombination zone study of phosphorescent organic light-emitting diodes with triplet mixed host emitting structureYook et al., 2010
- Document ID
- 16963028566967265611
- Author
- Yook K
- Lee J
- Publication year
- Publication venue
- Journal of Industrial and Engineering Chemistry
External Links
Snippet
Recombination zone of green phosphorescent organic light-emitting diodes (PHOLEDs) with triplet mixed host was studied using red sensing layer. Recombination zone of triplet mixed host device with 4, 4′, 4 ″-tris (N-carbazolyl) triphenylamine and 1, 3, 5-tris (N …
- 238000005215 recombination 0 title abstract description 54
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
- H01L51/0084—Transition metal complexes, e.g. Ru(II)polypyridine complexes
- H01L51/0085—Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising Iridium
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
- H01L51/5012—Electroluminescent [EL] layer
- H01L51/5016—Triplet emission
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0077—Coordination compounds, e.g. porphyrin
- H01L51/0079—Metal complexes comprising a IIIB-metal (B, Al, Ga, In or TI), e.g. Tris (8-hydroxyquinoline) gallium (Gaq3)
- H01L51/0081—Metal complexes comprising a IIIB-metal (B, Al, Ga, In or TI), e.g. Tris (8-hydroxyquinoline) gallium (Gaq3) comprising aluminium, e.g. Alq3
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
- H01L51/5012—Electroluminescent [EL] layer
- H01L51/5036—Multi-colour light emission, e.g. colour tuning, polymer blend, stack of electroluminescent layers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
- H01L51/52—Details of devices
- H01L51/5203—Electrodes
- H01L51/5206—Anodes, i.e. with high work-function material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/005—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
- H01L51/0062—Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
- H01L51/0071—Polycyclic condensed heteroaromatic hydrocarbons
- H01L51/0072—Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
- H01L51/56—Processes or apparatus specially adapted for the manufacture or treatment of such devices or of parts thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/50—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
- H01L51/5088—Carrier injection layer
- H01L51/5092—Electron injection layer
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/28—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including components using organic materials as the active part, or using a combination of organic materials with other materials as the active part
- H01L27/32—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including components using organic materials as the active part, or using a combination of organic materials with other materials as the active part with components specially adapted for light emission, e.g. flat-panel displays using organic light-emitting diodes [OLED]
- H01L27/3206—Multi-colour light emission
- H01L27/3211—Multi-colour light emission using RGB sub-pixels
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L2251/00—Indexing scheme relating to organic semiconductor devices covered by group H01L51/00
- H01L2251/50—Organic light emitting devices
- H01L2251/55—Organic light emitting devices characterised by parameters
- H01L2251/558—Thickness
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yook et al. | Recombination zone study of phosphorescent organic light-emitting diodes with triplet mixed host emitting structure | |
Yook et al. | High efficiency deep blue phosphorescent organic light-emitting diodes | |
Liu et al. | Simple-structure organic light emitting diodes: Exploring the use of thermally activated delayed fluorescence host and guest materials | |
Han et al. | Management of charge carriers and excitons for efficient and color-stable white phosphorescent organic light-emitting diodes with simplified structure | |
Shi et al. | Flexible top-emitting warm-white organic light-emitting diodes with highly luminous performances and extremely stable chromaticity | |
Yook et al. | Color stability and suppressed efficiency roll-off in white organic light-emitting diodes through management of interlayer and host properties | |
Yook et al. | Highly efficient pure white phosphorescent organic light-emitting diodes using a deep blue phosphorescent emitting material | |
Yook et al. | Effect of the interlayer composition on the lifetime and color change of hybrid white organic light-emitting diodes | |
Lee et al. | Transparent organic light-emitting diodes with different bi-directional emission colors using color-conversion capping layers | |
Lin et al. | A high performance of BPhen-based white organic light-emitting devices with a dual-emitting layer and its electroluminescent spectral property | |
Ma et al. | Non-doped white organic light-emitting diodes consisting of three primary colors based on a bipolar emitter | |
Lee et al. | Balancing the white emission of OLED by a design of fluorescent blue and phosphorescent green/red emitting layer structures | |
Lee et al. | Luminescence characteristics of hybrid dual emitting layers in blue organic light-emitting diodes by controlling the fluorescent doping concentration | |
Lee et al. | Operation lifetimes of organic light-emitting devices with different layer structures | |
Lee et al. | Efficient white organic electroluminescent devices consisting of blue-and red-emitting layers | |
Ahn et al. | The conjugation effects on the luminescence properties of oligophenylenes for the OLED | |
Cheon et al. | Bis (1-phenyl-1H-benzo [d] imidazole) phenylphosphine oxide interlayer for effective hole blocking in efficient phosphorescent organic light emitting diodes based on widely used charge transporting layers | |
Yook et al. | Lifetime study of red phosphorescent organic light-emitting diodes with a double doping structure | |
Jeong et al. | Four-wavelength white organic light-emitting diodes using 4, 4′-bis-[carbazoyl-(9)]-stilbene as a deep blue emissive layer | |
Jang et al. | High power efficiency in single layer blue phosphorescent organic light-emitting diodes | |
Ding et al. | White organic light-emitting diodes based on incomplete energy transfer from perylene to rubrene | |
Ulla et al. | Effect of hole-transport layer thickness on the performance of organic light-emitting diodes | |
Wang et al. | High-efficiency fluorescent white organic light-emitting device with double emissive layers | |
Xue et al. | Improved color stability of white organic light-emitting diodes without interlayer between red, orange and blue emission layers | |
Yang et al. | Efficient white organic light-emitting devices using 4, 7-diphenyl-1, 10-phenanthroline as block layer |