Mao et al., 2017 - Google Patents
The thermal aberration analysis of a lithography projection lensMao et al., 2017
- Document ID
- 16801944851895759627
- Author
- Mao Y
- Li S
- Sun G
- Wang J
- Duan L
- Bu Y
- Wang X
- Publication year
- Publication venue
- Optical Microlithography XXX
External Links
Snippet
In optical lithography tools, thermal aberration of a projection lens, which is caused by lens heating, leads to degradation of imaging quality. In addition to in-line feedforward compensation technology [1], the thermal aberration can be reduced by optimizing …
- 230000004075 alteration 0 title abstract description 61
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Exposure apparatus for microlithography
- G03F7/70216—Systems for imaging mask onto workpiece
- G03F7/70258—Projection system adjustment, alignment during assembly of projection system
- G03F7/70266—Adaptive optics, e.g. deformable optical elements for wavefront control
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Exposure apparatus for microlithography
- G03F7/70483—Information management, control, testing, and wafer monitoring, e.g. pattern monitoring
- G03F7/70491—Information management and control, including software
- G03F7/705—Modelling and simulation from physical phenomena up to complete wafer process or whole workflow in wafer fabrication
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Exposure apparatus for microlithography
- G03F7/708—Construction of apparatus, e.g. environment, hygiene aspects or materials
- G03F7/70858—Environment aspects, e.g. pressure of beam-path gas, temperature
- G03F7/70883—Environment aspects, e.g. pressure of beam-path gas, temperature of optical system
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Exposure apparatus for microlithography
- G03F7/70216—Systems for imaging mask onto workpiece
- G03F7/70341—Immersion
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Exposure apparatus for microlithography
- G03F7/708—Construction of apparatus, e.g. environment, hygiene aspects or materials
- G03F7/7095—Materials, e.g. materials for housing, stage or other support having particular properties, e.g. weight, strength, conductivity, thermal expansion coefficient
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Exposure apparatus for microlithography
- G03F7/70058—Mask illumination systems
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Exposure apparatus for microlithography
- G03F7/70425—Imaging strategies, e.g. for increasing throughput, printing product fields larger than the image field, compensating lithography- or non-lithography errors, e.g. proximity correction, mix-and-match, stitching, double patterning
- G03F7/70433—Layout for increasing efficiency, for compensating imaging errors, e.g. layout of exposure fields,; Use of mask features for increasing efficiency, for compensating imaging errors
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F1/00—Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
- G03F1/14—Originals characterised by structural details, e.g. supports, cover layers, pellicle rings
- G03F1/144—Auxiliary patterns; Corrected patterns, e.g. proximity correction, grey level masks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhu et al. | Fast thermal aberration model for lithographic projection lenses | |
Mao et al. | The thermal aberration analysis of a lithography projection lens | |
Guo et al. | Co-optimization of the mask, process, and lithography-tool parameters to extend the process window | |
Du et al. | Profile control technology for high-performance microlens array | |
Aoyama et al. | Impact of realistic source shape and flexibility on source mask optimization | |
Finders et al. | Imaging enhancement (low k1 imaging) in EUV lithography: current status and future resolution enhancement techniques | |
Finders et al. | Illumination source optimization in EUV lithography for staggered contact holes and pillars for DRAM applications | |
Braam et al. | EUV mask synthesis with rigorous ILT for process window improvement | |
Mao et al. | Modeling and optimization of lens heating effect for lithographic projector | |
Marinescu et al. | Saddle-point construction in the design of lithographic objectives, part 1: method | |
Hao et al. | The calculation and representation of polarization aberration induced by 3D mask in lithography simulation | |
Choi et al. | Model-based optical proximity correction for immersion lithography-based flat optics platform | |
Wang et al. | Research development of thermal aberration in 193nm lithography exposure system | |
Li et al. | Simulations of impacts on aerial image performance of defocus on different resolution enhancement technologies | |
Mao et al. | Prediction of lens heating induced aberration via particle filter in optical lithography | |
Peng et al. | Real-time photolithographic technique for fabrication of arbitrarily shaped microstructures | |
Wang et al. | Impact of noise sources and optical design on defect detection sensitivity in extreme ultraviolet actinic pattern inspection tool | |
Jiang et al. | Source optimization using simulated annealing algorithm | |
Huang | The ultra-violet partial coherence modulation transfer function for lithography | |
Zhao et al. | Impact of mask topography and flare on process window of EUV lithography | |
Liu et al. | Fast model for mask spectrum simulation and analysis of mask shadowing effects in extreme ultraviolet lithography | |
Sato et al. | Impact of polarization on an attenuated phase shift mask with ArF hyper-numerical aperture lithography | |
Hsu et al. | Light source heat absorption analysis of a Dyson type lithography lens | |
Huang | The partial coherence modulation transfer function in testing lithography lens | |
Zhevlakov et al. | High-NA EUV projection lens with central obscuration |