Nothing Special   »   [go: up one dir, main page]

Ismail et al., 2013 - Google Patents

A high performance MEMS based digital-output gyroscope

Ismail et al., 2013

View PDF
Document ID
16627229226113771550
Author
Ismail A
George B
Elmallah A
Mokhtar A
Abdelazim M
Elmala M
Elshennawy A
Omar A
Saeed M
Mostafa I
Elsayed A
Publication year
Publication venue
2013 Transducers & Eurosensors XXVII: The 17th International Conference on Solid-State Sensors, Actuators and Microsystems (TRANSDUCERS & EUROSENSORS XXVII)

External Links

Snippet

In this work, the architecture, and measurements results of an ultra-low noise closed-loop force feedback gyroscope, with superior bias instability, are presented. The MEMS is interfaced to a highly programmable capacitive interface ASIC, constructing a complete …
Continue reading at engineering.purdue.edu (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P15/125Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values by capacitive pick-up
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C19/00Gyroscopes; Turn-sensitive devices using vibrating masses; Turn-sensitive devices without moving masses; Measuring angular rate using gyroscopic effects
    • G01C19/56Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces
    • G01C19/5719Turn-sensitive devices using vibrating masses, e.g. vibratory angular rate sensors based on Coriolis forces using planar vibrating masses driven in a translation vibration along an axis
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0808Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate
    • G01P2015/0811Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass
    • G01P2015/0817Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining in-plane movement of the mass, i.e. movement of the mass in the plane of the substrate for one single degree of freedom of movement of the mass for pivoting movement of the mass, e.g. in-plane pendulum
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/24Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance
    • G01D5/241Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes
    • G01D5/2412Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage by varying capacitance by relative movement of capacitor electrodes by varying overlap
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/412Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution
    • H03M3/422Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the number of quantisers and their type and resolution having one quantiser only
    • HELECTRICITY
    • H03BASIC ELECTRONIC CIRCUITRY
    • H03MCODING; DECODING; CODE CONVERSION IN GENERAL
    • H03M3/00Conversion of analogue values to or from differential modulation
    • H03M3/30Delta-sigma modulation
    • H03M3/39Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators
    • H03M3/436Structural details of delta-sigma modulators, e.g. incremental delta-sigma modulators characterised by the order of the loop filter, e.g. error feedback type

Similar Documents

Publication Publication Date Title
US10365104B2 (en) Digital controller for a MEMS gyroscope
US11112248B2 (en) Secondary sense loop with force feedback capability
Boser Electronics for micromachined inertial sensors
US8476970B2 (en) Interface for MEMS inertial sensors
He et al. A CMOS Readout Circuit for SOI Resonant Accelerometer With 4-$\mu\rm g $ Bias Stability and 20-$\mu\rm g/\sqrt {{\hbox {Hz}}} $ Resolution
Ezekwe et al. A Mode-Matching $\Sigma\Delta $ Closed-Loop Vibratory Gyroscope Readout Interface With a 0.004$^{\circ} $/s/$\surd {\hbox {Hz}} $ Noise Floor Over a 50 Hz Band
Ismail et al. A high performance MEMS based digital-output gyroscope
ES2720654T3 (en) Procedure for automatic frequency filter adaptation during operation closed regulation loops
Wang et al. A 0.4$\mu\text {g} $ Bias Instability and 1.2$\mu\text {g}/\surd $ Hz Noise Floor MEMS Silicon Oscillating Accelerometer With CMOS Readout Circuit
Marx et al. A 27$\mu\text {W} $0.06 mm2 Background Resonance Frequency Tuning Circuit Based on Noise Observation for a 1.71 mW CT-$\Delta\Sigma $ MEMS Gyroscope Readout System With 0.9°/h Bias Instability
CN106289212B (en) Integrated measurement and control unit for silicon micro tuning fork gyroscope
Rombach et al. An Interface ASIC for MEMS Vibratory Gyroscopes With a Power of 1.6 mW, 92 dB DR and 0.007°/s/$\sqrt {\rm {Hz}} $ Noise Floor Over a 40 Hz Band
CN107504964B (en) Self-clocking digital micro-mechanical gyroscope sigma delta M closed-loop detection circuit system
Jun et al. An SC Interface With Programmable-Gain Embedded $\Delta\Sigma $ ADC for Monolithic Three-Axis 3-D Stacked Capacitive MEMS Accelerometer
Sheng et al. Design of a dual quantization electromechanical sigma–delta modulator MEMS vibratory wheel gyroscope
CN109029437B (en) Three-freedom closed-loop gyro digital interface circuit
Elsayed et al. A self-clocked ASIC interface for MEMS gyroscope with 1m°/s/√ Hz noise floor
Raman et al. A digitally controlled MEMS gyroscope with unconstrained sigma-delta force-feedback architecture
Ismail et al. A high-performance self-clocked digital-output quartz gyroscope
Lei et al. An oversampled capacitance-to-voltage converter IC with application to time-domain characterization of MEMS resonators
Northemann et al. A digital interface for gyroscopes controlling the primary and secondary mode using bandpass sigma–delta modulation
Northemann et al. Drive and sense interface for gyroscopes based on bandpass sigma-delta modulators
Bestetti et al. Low-power frequency-to-digital-converter for a 6-axis MEMS frequency-modulated inertial measurement unit
Tan et al. A dual-axis MEMS vibratory gyroscope ASIC with 0.0061/s/VHz noise floor over 480 Hz bandwidth
Chen et al. Self-clocking electro-mechanical sigma-delta modulator quadrature error cancellation for MEMS gyroscope