Zhang et al., 1996 - Google Patents
High coercivity SmFeSiC films fabricated by multilayer sputteringZhang et al., 1996
View PDF- Document ID
- 16509885225830328856
- Author
- Zhang S
- Shan Z
- Liu Y
- Sellmyer D
- Zhao T
- Zhao J
- Shen B
- Publication year
- Publication venue
- IEEE Transactions on Magnetics
External Links
Snippet
SmFeSiC thin films have been obtained by sputtering SmFe/C (Si) multilayers with a Ta underlayer on Si substrates and subsequently annealing at 700/spl deg/C. The coercivity of the SmFeSiC films strongly depends on the sputtering and annealing conditions. The …
- 238000004544 sputter deposition 0 title abstract description 8
Classifications
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Metals or alloys
- H01F1/047—Alloys characterised by their composition
- H01F1/053—Alloys characterised by their composition containing rare earth metals
- H01F1/055—Alloys characterised by their composition containing rare earth metals and magnetic transition metals, e.g. SmCo5
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/01—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
- H01F1/03—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
- H01F1/032—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of hard-magnetic materials
- H01F1/04—Metals or alloys
- H01F1/06—Metals or alloys in the form of particles, e.g. powder
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/30—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/08—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
- H01F10/10—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
- H01F10/18—Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F1/00—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
- H01F1/0036—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity
- H01F1/0072—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures
- H01F1/0081—Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties showing low dimensional magnetism, i.e. spin rearrangements due to a restriction of dimensions, e.g. showing giant magnetoresistivity one dimensional, i.e. linear or dendritic nanostructures in a non-magnetic matrix, e.g. Fe-nanowires in a nanoporous membrane
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/24—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates from liquids
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F41/00—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
- H01F41/14—Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
- H01F41/22—Heat treatment; Thermal decomposition; Chemical vapour deposition
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C14/00—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
- C23C14/22—Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
- C23C14/34—Sputtering
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01F—MAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
- H01F10/00—Thin magnetic films, e.g. of one-domain structure
- H01F10/32—Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
- H01F10/324—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
- H01F10/3268—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
- H01F10/3281—Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn only by use of asymmetry of the magnetic film pair itself, i.e. so-called pseudospin valve [PSV] structure, e.g. NiFe/Cu/Co
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Coey et al. | Magnetic nitrides | |
Feng et al. | Magnetic properties and coercivity of MnGa films deposited on different substrates | |
Jiang et al. | Structure and magnetic properties of NdFeB thin films with Cr, Mo, Nb, Ta, Ti, and V buffer layers | |
Chen et al. | Coercivity mechanism of anisotropic Pr 2 Fe 14 B thin films with perpendicular texture | |
Sui et al. | Nd-Fe-(C, B) permanent magnets made by mechanical alloying and subsequent annealing | |
Zhou et al. | Permanent-magnet properties of thermally processed FePt and FePt-Fe multilayer films | |
Liu et al. | Phase formation and magnetic properties of Co-rare earth magnetic films | |
Prados et al. | Magnetic and structural properties of high coercivity Sm (Co, Ni, Cu) sputtered thin films | |
Zhang et al. | High coercivity SmFeSiC films fabricated by multilayer sputtering | |
Sharma et al. | Anomalous temperature dependence of coercivity at low temperature in $ L1_ {0} $ FePt thin films | |
Shima et al. | Overlayer-induced anisotropic alignment of Nd 2 Fe 14 B nanograins | |
Liu et al. | Remanence enhancement and exchange coupling in PrCo/Co films | |
Castaldi et al. | Deposition of hard magnetic rare-earth-Fe-B thin films by magnetron sputtering | |
Huang et al. | ${L}{\text {1}} _ {\text {0}} $-Ordered MnAl Thin Films With High Perpendicular Magnetic Anisotropy Using TiN Underlayers on Si Substrates | |
Perumal et al. | Perpendicular thin films of carbon-doped FePt for ultrahigh-density magnetic recording media | |
Krishnan et al. | High coercivity Sm-Co thin films from elemental Sm/Co multilayer deposition and their microstructural aspects | |
Sun et al. | Magnetic properties and microstructure studies of Sm–Fe magnetic thin films | |
Bahamida et al. | A comparative structural and magnetic study of Fe100− xPdx (x= 15, 20 and 36) thin films deposited on Si (100) and glass substrates | |
Chen et al. | Structure and magnetic properties of high-energy product Nd-Fe-B/Nd-O thin films | |
Seki et al. | Optimum Compositions for the low-temperature fabrication of highly ordered FePt [001] and FePt [110] films | |
Zhong et al. | Microstructure and magnetic properties of CoFe 2 O 4 thin films deposited on Si substrates with an Fe 3 O 4 under-layer | |
Liu et al. | Magnetic properties of FeCo films prepared by co-sputtering and hydrogenous gas reactive sputtering | |
Li et al. | Effects of annealing temperature and time on microstructure and magnetic properties of Pr-Co thin films | |
Okumoto et al. | Effect of underlayer structure on the crystallographic and magnetic properties of Nd-Fe-B thin films | |
Gu et al. | Crystallization Behavior and Magnetic Properties of Amorphous Nd Fe B Thin Films |