Rahimipour et al., 2021 - Google Patents
A hybrid of neuro-fuzzy inference system and hidden Markov Model for activity-based mobility modeling of cellphone usersRahimipour et al., 2021
- Document ID
- 16220444191058151031
- Author
- Rahimipour S
- Ghatee M
- Hashemi S
- Nickabadi A
- Publication year
- Publication venue
- Computer Communications
External Links
Snippet
The aim of this paper is to develop an activity-based travel demand model by receiving cellular network data. Our contribution is to model the uncertainty of human behaviors and also the ambiguity in features affecting users' activities. We used probabilities to model the …
- 230000000694 effects 0 title abstract description 279
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce, e.g. shopping or e-commerce
- G06Q30/02—Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
- G06Q30/0202—Market predictions or demand forecasting
- G06Q30/0204—Market segmentation
- G06Q30/0205—Location or geographical consideration
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30286—Information retrieval; Database structures therefor; File system structures therefor in structured data stores
- G06F17/30386—Retrieval requests
- G06F17/30424—Query processing
- G06F17/30533—Other types of queries
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
- G06Q10/063—Operations research or analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
- G06F17/30241—Information retrieval; Database structures therefor; File system structures therefor in geographical information databases
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q50/00—Systems or methods specially adapted for a specific business sector, e.g. utilities or tourism
- G06Q50/01—Social networking
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N7/00—Computer systems based on specific mathematical models
- G06N7/005—Probabilistic networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W4/00—Mobile application services or facilities specially adapted for wireless communication networks
- H04W4/02—Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS
- H04W4/023—Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS using mutual or relative location information between multiple location based services [LBS] targets or of distance thresholds
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W4/00—Mobile application services or facilities specially adapted for wireless communication networks
- H04W4/02—Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS
- H04W4/04—Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS using association of physical positions and logical data in a dedicated environment, e.g. buildings or vehicles
- H04W4/043—Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS using association of physical positions and logical data in a dedicated environment, e.g. buildings or vehicles using ambient awareness, e.g. involving buildings using floor or room numbers
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W4/00—Mobile application services or facilities specially adapted for wireless communication networks
- H04W4/02—Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS
- H04W4/025—Mobile application Services making use of the location of users or terminals, e.g. OMA SUPL, OMA MLP or 3GPP LCS using location based information parameters
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Urban human mobility: Data-driven modeling and prediction | |
Wu et al. | Location prediction on trajectory data: A review | |
Anda et al. | Transport modelling in the age of big data | |
Wu et al. | Inferring demographics from human trajectories and geographical context | |
Widhalm et al. | Discovering urban activity patterns in cell phone data | |
CN105532030A (en) | Apparatus, systems, and methods for analyzing movements of target entities | |
Bin et al. | A travel route recommendation system based on smart phones and IoT environment | |
Koolwal et al. | A comprehensive survey on trajectory-based location prediction | |
Terroso-Saenz et al. | Land use discovery based on Volunteer Geographic Information classification | |
Li et al. | A regionalization method for clustering and partitioning based on trajectories from NLP perspective | |
Zhao et al. | Mobile crowd location prediction with hybrid features using ensemble learning | |
Cui et al. | Social media and mobility landscape: Uncovering spatial patterns of urban human mobility with multi source data | |
McKenzie et al. | Measuring urban regional similarity through mobility signatures | |
Alhazzani et al. | Urban attractors: Discovering patterns in regions of attraction in cities | |
Cao et al. | Understanding metropolitan crowd mobility via mobile cellular accessing data | |
Rahimipour et al. | A hybrid of neuro-fuzzy inference system and hidden Markov Model for activity-based mobility modeling of cellphone users | |
Xiong et al. | Revealing correlation patterns of individual location activity motifs between workdays and day-offs using massive mobile phone data | |
Sun et al. | Deep convolutional autoencoder for urban land use classification using mobile device data | |
Alhazzani et al. | Urban Attractors: Discovering patterns in regions of attraction in cities | |
Alesiani et al. | A probabilistic activity model for predicting the mobility patterns of homogeneous social groups based on social network data | |
Rodríguez et al. | Analyzing urban mobility paths based on users’ activity in social networks | |
Li et al. | A contextualized and personalized model to predict user interest using location-based social networks | |
Ghahramani et al. | Spatiotemporal analysis of mobile phone network based on self-organizing feature map | |
Celik et al. | Semantic place prediction from crowd-sensed mobile phone data | |
Cui et al. | Generating a synthetic probabilistic daily activity-location schedule using large-scale, long-term and low-frequency smartphone GPS data with limited activity information |