Nothing Special   »   [go: up one dir, main page]

Becker et al., 1997 - Google Patents

Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers

Becker et al., 1997

View PDF
Document ID
16207227631867976833
Author
Becker H
Burns S
Friend R
Publication year
Publication venue
Physical Review B

External Links

Snippet

We report the modification of photoluminescence (PL) and electroluminescence (EL) from conjugated polymers due to the proximity of metal films. The presence of a metal film alters the radiative decay rate of an emitter via interference effects, and also opens up an efficient …
Continue reading at scholar.archive.org (PDF) (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0034Organic polymers or oligomers
    • H01L51/0035Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
    • H01L51/0038Poly-phenylenevinylene and derivatives
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/52Details of devices
    • H01L51/5262Arrangements for extracting light from the device
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • H01L51/0079Metal complexes comprising a IIIB-metal (B, Al, Ga, In or TI), e.g. Tris (8-hydroxyquinoline) gallium (Gaq3)
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/5012Electroluminescent [EL] layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • H01L51/0084Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0034Organic polymers or oligomers
    • H01L51/0035Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
    • H01L51/0039Polyeflurorene and derivatives
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/5048Carrier transporting layer
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01SDEVICES USING STIMULATED EMISSION
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/36Structure or shape of the active region; Materials used for the active region comprising organic materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2251/00Indexing scheme relating to organic semiconductor devices covered by group H01L51/00

Similar Documents

Publication Publication Date Title
Becker et al. Effect of metal films on the photoluminescence and electroluminescence of conjugated polymers
Patel et al. High-efficiency organic light-emitting diodes
Kallinger et al. A flexible conjugated polymer laser
Dodabalapur et al. Physics and applications of organic microcavity light emitting diodes
Granlund et al. Interference phenomenon determines the color in an organic light emitting diode
Grüner et al. Emission enhancement in single‐layer conjugated polymer microcavities
Bulović et al. Weak microcavity effects in organic light-emitting devices
Becker et al. Role of optical properties of metallic mirrors in microcavity structures
Wohlgenannt et al. Spin-dependent exciton formation rates in π-conjugated materials
Baldo et al. Excitonic singlet-triplet ratio in a semiconducting organic thin film
Lupton et al. Control of mobility in molecular organic semiconductors by dendrimer generation
Riel et al. Tuning the emission characteristics of top-emitting organic light-emitting devices by means of a dielectric capping layer: An experimental and theoretical study
Anikeeva et al. Electronic and excitonic processes in light-emitting devices based on organic materials and colloidal quantum dots
McGehee et al. Semiconducting (conjugated) polymers as materials for solid‐state lasers
Barta et al. Efficient photo and electroluminescence of regioregular poly (alkylthiophene) s
CN101447644B (en) Electric pump surface-emitting coupled organic laser device with microcavity
US7965037B2 (en) Organic electroluminescence device and organic laser diode
Weaver et al. Recent progress in polymers for electroluminescence: microcavity devices and electron transport polymers
Kozlov et al. Optical properties of molecular organic semiconductor thin films under intense electrical excitation
US6287712B1 (en) Color-tunable organic light emitting devices
US6605904B2 (en) Tunable multicolor electroluminescent device
Leising et al. Efficient full-colour electroluminescence and stimulated emission with polyphenylenes
EP1372360A1 (en) Organic photoluminescent polymers with improved stability
Leger et al. Thickness-dependent changes in the optical properties of PPV-and PF-based polymer light emitting diodes
CN104659651A (en) Organic laser device