Handoko et al., 2020 - Google Patents
Effect of cyano substituent on photovoltaic properties of quinoxaline-based polymersHandoko et al., 2020
- Document ID
- 159932585940096758
- Author
- Handoko S
- Jin H
- Whang D
- Kim J
- Chang D
- Publication year
- Publication venue
- Journal of Industrial and Engineering Chemistry
External Links
Snippet
Three donor-acceptor type quinoxaline-based conjugated polymers, in which electron- donating indacenodithiophene (IDT) and indacenodithieno [3, 2-b] thiophene (IDTT) were connected to the electron-accepting 2, 3-diphenylquinoxaline (DPQ) derivatives, were …
- 229920000642 polymer 0 title abstract description 69
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G61/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G61/12—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
- C08G61/122—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
- C08G61/123—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
- C08G61/124—Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one nitrogen atom in the ring
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/32—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
- C08G2261/322—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
- C08G2261/3223—Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/34—Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain
- C08G2261/344—Monomer units or repeat units incorporating structural elements in the main chain incorporating partially-aromatic structural elements in the main chain containing heteroatoms
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/30—Monomer units or repeat units incorporating structural elements in the main chain
- C08G2261/31—Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/90—Applications
- C08G2261/91—Photovoltaic applications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/10—Definition of the polymer structure
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G2261/00—Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
- C08G2261/40—Polymerisation processes
- C08G2261/41—Organometallic coupling reactions
- C08G2261/411—Suzuki reactions
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0035—Organic polymers or oligomers comprising aromatic, heteroaromatic, or arrylic chains, e.g. polyaniline, polyphenylene, polyphenylene vinylene
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
- Y02E10/50—Photovoltaic [PV] energy
- Y02E10/54—Material technologies
- Y02E10/549—Material technologies organic PV cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H01L51/00—Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
- H01L51/0032—Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
- H01L51/0034—Organic polymers or oligomers
- H01L51/0043—Copolymers
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Handoko et al. | Synthesis of quinoxaline-based polymers with multiple electron-withdrawing groups for polymer solar cells | |
Data et al. | Unusual properties of electropolymerized 2, 7-and 3, 6-carbazole derivatives | |
Putri et al. | Step-by-step improvement in photovoltaic properties of fluorinated quinoxaline-based low-band-gap polymers | |
Xu et al. | Side‐Chain engineering of Benzodithiophene‐fluorinated Quinoxaline low‐band‐gap co‐polymers for high‐performance polymer solar cells | |
Handoko et al. | Effect of cyano substituent on photovoltaic properties of quinoxaline-based polymers | |
Sakthivel et al. | Synthesis and characterization of new indeno [1, 2-b] indole-co-benzothiadiazole-based π-conjugated ladder type polymers for bulk heterojunction polymer solar cells | |
Tamilavan et al. | Synthesis of conjugated polymers with broad absorption bands and photovoltaic properties as bulk heterojuction solar cells | |
Hwang et al. | Synthesis, characterization, and photovoltaic applications of dithienogermole-dithienylbenzothiadiazole and-dithienylthiazolothiazole copolymers | |
Sun et al. | Improved bulk-heterojunction polymer solar cell performance through optimization of the linker groupin donor–acceptor conjugated polymer | |
Gao et al. | An all small molecule organic solar cell based on a porphyrin donor and a non-fullerene acceptor with complementary and broad absorption | |
Wang et al. | Synthesis and photovoltaic properties of low-bandgap polymers based on N-arylcarbazole | |
Shen et al. | Side chain effect on photovoltaic properties of D–A copolymers based on benzodithiophene and thiophene-substituted bithiazole | |
Pola et al. | Synthesis of fluorinated benzotriazole (BTZ)-and benzodithiophene (BDT)-based low-bandgap conjugated polymers for solar cell applications | |
Hou et al. | Synthesis, characterization, and photovoltaic performance of the polymers based on thiophene-2, 5-bis ((2-ethylhexyl) oxy) benzene-thiophene | |
Tamilavan et al. | Synthesis of N-[4-Octylphenyl] dithieno [3, 2-b: 2′, 3′-d] pyrrole-based broad absorbing polymers and their photovoltaic applications | |
Chan et al. | Synthesis of indolo [3, 2-b] carbazole-based random copolymers for polymer solar cell applications | |
Xiang et al. | B← N bridged polymer acceptors with 900 nm absorption edges enabling high-performance all-polymer solar cells | |
Ameen et al. | Solution processed bulk heterojunction organic solar cells using small organic semiconducting materials based on fluorene core unit | |
Cevher et al. | Effect of substituent groups on quinoxaline-based random copolymers on the optoelectronic and photovoltaic properties | |
Li et al. | Synthesis and photovoltaic properties of D-π-A copolymers based on thieno [3, 2-b] thiophene bridge unit | |
Hu et al. | Benzothiadiazole [1, 2-b: 4, 3-b′] dithiophene, a new ladder-type multifused block: Synthesis and photovoltaic application | |
Yu et al. | Structure-performance correlation of indacenodithiophene-based narrow band-gap polymers with pendant diketopyrrolopyrrole units | |
Goker et al. | Incorporation of different conjugated linkers into low band gap polymers based on 5, 6‐Bis (octyloxy)‐2, 1, 3 benzooxadiazole for tuning optoelectronic properties | |
Bathula et al. | Selenophene based benzodithiophene polymers as potential candidates for optoelectronic applications | |
Hu et al. | An easily available near-infrared absorbing non-fullerene photovoltaic electron acceptor with indeno [1, 2-b] indole as the central core |