Gogineni et al., 2023 - Google Patents
Experimental investigation of additive manufacturing of SS 316L using laser direct metal depositionGogineni et al., 2023
View PDF- Document ID
- 15806637410257959268
- Author
- Gogineni S
- Singh S
- Samuel G
- Publication year
- Publication venue
- Manufacturing Technology Today
External Links
Snippet
Laser direct metal deposition (LDMD) is a rapidly emerging additive manufacturing technique offering attractive characteristics like high deposition rates, component repair, and deposition of functionally graded materials. Experimental investigations have been carried …
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/34—Laser welding for purposes other than joining
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/38—Removing material by boring or cutting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/02—Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
- B23K26/06—Shaping the laser beam, e.g. by masks or multi-focusing
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/20—Bonding
- B23K26/32—Bonding taking account of the properties of the material involved
- B23K26/322—Bonding taking account of the properties of the material involved involving coated metal parts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/36—Removing material
- B23K26/40—Removing material taking account of the properties of the material involved
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K26/00—Working by laser beam, e.g. welding, cutting or boring
- B23K26/08—Devices involving relative movement between laser beam and workpiece
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor; Presses and furnaces
- B22F3/10—Sintering only
- B22F3/105—Sintering only by using electric current other than for infra-red radiant energy, laser radiation or plasma ; by ultrasonic bonding
- B22F3/1055—Selective sintering, i.e. stereolithography
- B22F2003/1056—Apparatus components, details or accessories
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
- B22F9/02—Making metallic powder or suspensions thereof using physical processes
- B22F9/06—Making metallic powder or suspensions thereof using physical processes starting from liquid material
- B22F9/08—Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
- B22F2009/0804—Dispersion in or on liquid, other than with sieves
- B22F2009/0808—Mechanical dispersion of melt, e.g. by sieves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K2201/00—Articles made by soldering, welding or cutting by applying heat locally
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23K—SOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
- B23K35/00—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
- B23K35/02—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
- B23K35/0222—Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11141809B2 (en) | Electron beam additive manufacturing | |
Basha et al. | Laser polishing of 3D printed metallic components: a review on surface integrity | |
Wang et al. | Additive manufacturing based on welding arc: a low-cost method | |
Gibson et al. | Directed energy deposition processes | |
Pupo et al. | Scanning space analysis in selective laser melting for CoCrMo powder | |
Ye et al. | Study of hybrid additive manufacturing based on pulse laser wire depositing and milling | |
CN108339984B (en) | Method for growing complex structure on surface of cast-forged piece based on wire 3D printing | |
Balasubramaniyan et al. | Fiber laser cutting of Cu–Zr added quaternary NiTi shape memory alloy: experimental investigation and optimization | |
Anwar et al. | Electron beam melting of gamma titanium aluminide and investigating the effect of EBM layer orientation on milling performance | |
Khan et al. | Investigation of wire-cut EDM process parameters on Nimonic 90 made by wire arc additive manufacturing process | |
Rodrigues et al. | Effect of dynamic wire feeding on deposition quality in laser cladding process | |
Gogineni et al. | Experimental investigation of additive manufacturing of SS 316L using laser direct metal deposition | |
Kelbassa et al. | High speed LAM | |
Tyagi et al. | Experimental study of laser cladding process and prediction of process parameters by artificial neural network (ANN) | |
Gor et al. | A Review on Wire Arc Additive Manufacturing: Effect of Process Parameters on the Build Material Properties | |
Mahamood et al. | Microstructure and Mechanical Behaviour of Laser Metal Deposited Titanium Alloy. | |
Mahamood et al. | Improving surface integrity using laser metal deposition process | |
Leyens et al. | Laser processing: solutions for industry: Comprehensive preview to Laser Symposium and the 4th International Symposium for Additive Manufacturing (ISAM), 2021 | |
Laxminarayana et al. | Study of surface morphology on micro machined surfaces of AISI 316 by Die Sinker EDM | |
Karşi et al. | Optimization of Laser Cladding Process Parameters of a Martensitic Stainless Steel Coating on GGG70L Ductile Cast Iron. | |
Elgazzar et al. | Laser Surface Texturing of 304 Stainless Steel. | |
Shiva et al. | Evolution in additive manufacturing techniques of metals as net-shaped products | |
Teixeira et al. | Effect of solid-state laser parameters on the surface's topography formation during texturization of hard metal cutting tools | |
Mahamood | Laser metal deposition process | |
Anand | Review on surface characteristics of components produced by direct metal deposition process |