Nothing Special   »   [go: up one dir, main page]

Zhao et al., 2018 - Google Patents

EQE climbing over 6% at high brightness of 14350 cd/m2 in deep-blue OLEDs based on hybridized local and charge-transfer fluorescence

Zhao et al., 2018

Document ID
15888176208736427666
Author
Zhao J
Liu B
Wang Z
Tong Q
Du X
Zheng C
Lin H
Tao S
Zhang X
Publication year
Publication venue
ACS applied materials & interfaces

External Links

Snippet

Three deep-blue emitters PPi-Pid, PPi-Xid, and PPi-Mid based on a novel conjugated system phenantroimidazole-π-indolizine have been designed and synthesized. Here, indolizine with appropriate π-conjugation length was used as the acceptor profited from its …
Continue reading at pubs.acs.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0062Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene aromatic compounds comprising a hetero atom, e.g.: N,P,S
    • H01L51/0071Polycyclic condensed heteroaromatic hydrocarbons
    • H01L51/0072Polycyclic condensed heteroaromatic hydrocarbons comprising only nitrogen in the heteroaromatic polycondensed ringsystem, e.g. phenanthroline, carbazole
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • H01L51/0084Transition metal complexes, e.g. Ru(II)polypyridine complexes
    • H01L51/0085Transition metal complexes, e.g. Ru(II)polypyridine complexes comprising Iridium
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/50Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof specially adapted for light emission, e.g. organic light emitting diodes [OLED] or polymer light emitting devices [PLED];
    • H01L51/5012Electroluminescent [EL] layer
    • H01L51/5016Triplet emission
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/0077Coordination compounds, e.g. porphyrin
    • H01L51/0079Metal complexes comprising a IIIB-metal (B, Al, Ga, In or TI), e.g. Tris (8-hydroxyquinoline) gallium (Gaq3)
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L51/00Solid state devices using organic materials as the active part, or using a combination of organic materials with other materials as the active part; Processes or apparatus specially adapted for the manufacture or treatment of such devices, or of parts thereof
    • H01L51/0032Selection of organic semiconducting materials, e.g. organic light sensitive or organic light emitting materials
    • H01L51/005Macromolecular systems with low molecular weight, e.g. cyanine dyes, coumarine dyes, tetrathiafulvalene
    • H01L51/0059Amine compounds having at least two aryl rest on at least one amine-nitrogen atom, e.g. triphenylamine
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1018Heterocyclic compounds
    • C09K2211/1025Heterocyclic compounds characterised by ligands
    • C09K2211/1044Heterocyclic compounds characterised by ligands containing two nitrogen atoms as heteroatoms
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K2211/00Chemical nature of organic luminescent or tenebrescent compounds
    • C09K2211/10Non-macromolecular compounds
    • C09K2211/1003Carbocyclic compounds
    • C09K2211/1007Non-condensed systems
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; MISCELLANEOUS COMPOSITIONS; MISCELLANEOUS APPLICATIONS OF MATERIALS
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/06Luminescent, e.g. electroluminescent, chemiluminescent materials containing organic luminescent materials
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES; ELECTRIC SOLID STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H01L2251/00Indexing scheme relating to organic semiconductor devices covered by group H01L51/00
    • H01L2251/30Materials
    • H01L2251/301Inorganic materials
    • H01L2251/303Oxides, e.g. metal oxides
    • H01L2251/305Transparent conductive oxides [TCO]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/54Material technologies
    • Y02E10/549Material technologies organic PV cells

Similar Documents

Publication Publication Date Title
Zhao et al. EQE climbing over 6% at high brightness of 14350 cd/m2 in deep-blue OLEDs based on hybridized local and charge-transfer fluorescence
Li et al. Thermally activated delayed fluorescence carbonyl derivatives for organic light-emitting diodes with extremely narrow full width at half-maximum
Qin et al. Construction of efficient deep blue aggregation-induced emission luminogen from triphenylethene for nondoped organic light-emitting diodes
Tang et al. Efficient deep blue electroluminescence with an external quantum efficiency of 6.8% and CIE y< 0.08 based on a phenanthroimidazole–sulfone hybrid donor–acceptor molecule
Chen et al. Nondoped red fluorophores with hybridized local and charge-transfer state for high-performance fluorescent white organic light-emitting diodes
Zhang et al. High efficiency nondoped deep-blue organic light emitting devices based on imidazole-π-triphenylamine derivatives
Liu et al. High‐Performance Blue OLEDs Based on Phenanthroimidazole Emitters via Substitutions at the C6‐and C9‐Positions for Improving Exciton Utilization
Duan et al. Multi-dipolar chromophores featuring phosphine oxide as joint acceptor: a new strategy toward high-efficiency blue thermally activated delayed fluorescence dyes
Liu et al. Novel carbazol-pyridine-carbonitrile derivative as excellent blue thermally activated delayed fluorescence emitter for highly efficient organic light-emitting devices
Cao et al. Bipolar blue host emitter with unity quantum yield allows full exciton radiation in single-emissive-layer hybrid white organic light-emitting diodes
Xue et al. Highly efficient nondoped near‐ultraviolet electroluminescence with an external quantum efficiency greater than 6.5% based on a carbazole–triazole hybrid molecule with high and balanced charge mobility
Shan et al. Highly efficient deep blue organic light-emitting diodes based on imidazole: significantly enhanced performance by effective energy transfer with negligible efficiency roll-off
Liao et al. Hydroxynaphthyridine-derived group III metal chelates: wide band gap and deep blue analogues of green Alq3 (tris (8-hydroxyquinolate) aluminum) and their versatile applications for organic light-emitting diodes
Chen et al. Aromatically C6-and C9-substituted phenanthro [9, 10-d] imidazole blue fluorophores: structure–property relationship and electroluminescent application
Mondal et al. Fluorene‐Based Asymmetric Bipolar Universal Hosts for White Organic Light Emitting Devices
Huang et al. Similar or totally different: the control of conjugation degree through minor structural modifications, and deep‐blue aggregation‐induced emission luminogens for non‐doped OLEDs
Ye et al. Carbazole/sulfone hybrid D-π-A-structured bipolar fluorophores for high-efficiency blue-violet electroluminescence
Gong et al. De Novo Design of Silicon‐Bridged Molecule Towards a Bipolar Host: All‐Phosphor White Organic Light‐Emitting Devices Exhibiting High Efficiency and Low Efficiency Roll‐Off
Hsu et al. Phosphine-oxide-containing bipolar host material for blue electrophosphorescent devices
Yu et al. High-efficiency white organic light-emitting devices based on a highly amorphous iridium (III) orange phosphor
Gong et al. High-power-efficiency blue electrophosphorescence enabled by the synergistic combination of phosphine-oxide-based host and electron-transporting materials
Yang et al. Sky-blue thermally activated delayed fluorescence with intramolecular spatial charge transfer based on a dibenzothiophene sulfone emitter
Huang et al. Highly twisted bipolar emitter for efficient nondoped deep-blue electroluminescence
Poriel et al. Pure hydrocarbons: An efficient molecular design strategy for the next generation of host materials for Phosphorescent Organic Light-Emitting Diodes
Li et al. Highly efficient simple-structure sky-blue organic light-emitting diode using a bicarbazole/cyanopyridine bipolar host