Flatt et al., 1999 - Google Patents
Programming languages as operating systems (or revenge of the son of the Lisp machine)Flatt et al., 1999
View PDF- Document ID
- 15730741351393648462
- Author
- Flatt M
- Findler R
- Krishnamurthi S
- Felleisen M
- Publication year
- Publication venue
- ACM SIGPLAN Notices
External Links
Snippet
The MrEd virtual machine serves both as the implementation platform for the DrScheme programming environment, and as the underlying Scheme engine for executing expressions and programs entered into DrScheme's read-eval-print loop. We describe the key elements …
- 230000014509 gene expression 0 abstract description 15
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/4421—Execution paradigms
- G06F9/4428—Object-oriented
- G06F9/443—Object-oriented method invocation or resolution
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/455—Emulation; Software simulation, i.e. virtualisation or emulation of application or operating system execution engines
- G06F9/45504—Abstract machines for programme code execution, e.g. Java virtual machine [JVM], interpreters, emulators
- G06F9/45508—Runtime interpretation or emulation, e g. emulator loops, bytecode interpretation
- G06F9/45512—Command shells
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/4443—Execution mechanisms for user interfaces
- G06F9/4446—Help systems
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/54—Interprogramme communication; Intertask communication
- G06F9/542—Event management; Broadcasting; Multicasting; Notifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/44—Arrangements for executing specific programmes
- G06F9/445—Programme loading or initiating
- G06F9/44521—Dynamic linking or loading; Link editing at or after load time, e.g. Java class loading
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Programme initiating; Programme switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/468—Specific access rights for resources, e.g. using capability register
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/38—Implementation of user interfaces
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/34—Graphical or visual programming
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/31—Programming languages or programming paradigms
- G06F8/315—Object-oriented languages
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/30—Creation or generation of source code
- G06F8/36—Software reuse
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F11/00—Error detection; Error correction; Monitoring
- G06F11/36—Preventing errors by testing or debugging software
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F8/00—Arrangements for software engineering
- G06F8/20—Software design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Flatt et al. | Programming languages as operating systems (or revenge of the son of the Lisp machine) | |
Samek | Practical UML statecharts in C/C++: event-driven programming for embedded systems | |
US7865868B2 (en) | .NET ribbon model for a ribbon user interface | |
Singh | Mac OS X internals: a systems approach | |
Ryder et al. | The impact of software engineering research on modern programming languages | |
EP2284698A1 (en) | Compositional modeling of integrated systems using event-based legacy applications | |
Bishop et al. | Developing principles of GUI programming using views | |
Cardone et al. | Using mixins to build flexible widgets | |
Lawrence et al. | RGtk2: A graphical user interface toolkit for R | |
Shukla et al. | Aspect-oriented programming enables better code encapsulation and reuse | |
Meyer | The power of abstraction, reuse, and simplicity: An object-oriented library for event-driven design | |
Utley | A programmer's introduction to Visual Basic. NET | |
Schreiner | A java toolkit for teaching distributed algorithms | |
Taeumel et al. | Evolving user interfaces from within self-supporting programming environments: Exploring the project concept of squeak/smalltalk to bootstrap uis | |
Shriram et al. | Programming Languages as Operating Systems (or Revenge of the Son of the Lisp Machine) | |
MacDonald | Pro. NET 2.0 Windows Forms and Custom Controls in VB 2005 | |
Gansner et al. | A foundation for user interface construction | |
Sullivan | Advanced Programming Language Features for Executable Design Patterns" Better Patterns Through Reflection | |
Gervae et al. | Developing Business Applications with OpenStep™ | |
Amano et al. | LEAD++: an object-oriented language based on a reflective model for dynamic software adaptation | |
Neelamkavil et al. | X versus Eiffel toolkits for building graphical user interfaces | |
Myers | User Interface Programming Languages | |
Oberg et al. | Application Development Using Visual Basic and. NET | |
Zeigler et al. | Java and Threaded Containers | |
Feiler | Mac OSX Developer's Guide |