Chang et al., 2021 - Google Patents
Study on synthesis of spinel LiNi0. 5Mn1. 5O4 cathode material and its electrochemical properties by two‐stage roastingChang et al., 2021
- Document ID
- 15712083214179222444
- Author
- Chang L
- Cao S
- Luo S
- Zhang F
- Li K
- Publication year
- Publication venue
- International Journal of Energy Research
External Links
Snippet
Summary LiNi0. 5Mn1. 5O4 (LNMO) cathode material is burnt in two‐stage roasting process for lithium battery. Carried out X‐ray diffraction (XRD), scanner transmission electron microscope (SEM), laser grain fineness distribution and precise measurement of …
- 239000010406 cathode material 0 title abstract description 28
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/60—Other road transportation technologies with climate change mitigation effect
- Y02T10/70—Energy storage for electromobility
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2/00—Constructional details or processes of manufacture of the non-active parts
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Liang et al. | New understanding of Li3VO4/C as potential anode for Li-ion batteries: Preparation, structure characterization and lithium insertion mechanism | |
CN107706360A (en) | A kind of preparation method of composite cathode material for lithium ion cell | |
CN109742383A (en) | Sodium-ion battery hard carbon cathode material based on phenolic resin and its preparation method and application | |
WO2023030026A1 (en) | Method for preparing sulfide solid electrolyte material and application thereof | |
CN103456936A (en) | Sodium ion secondary battery, and layered titanate active substance, electrode material, anode and cathode adopted by the sodium ion secondary battery, and preparation method of the layered titanate active substance | |
US20170040636A1 (en) | Solid electrolyte material and all solid lithium battery | |
Chang et al. | Study on synthesis of spinel LiNi0. 5Mn1. 5O4 cathode material and its electrochemical properties by two‐stage roasting | |
Wang et al. | Wet‐chemistry synthesis of Li4Ti5O12 as anode materials rendering high‐rate Li‐ion storage | |
Meng et al. | A phytic acid derived LiMn0. 5Fe0. 5PO4/Carbon composite of high energy density for lithium rechargeable batteries | |
Cheng et al. | Hydrothermal synthesis of LiNi0. 5Mn1. 5O4 sphere and its performance as high-voltage cathode material for lithium ion batteries | |
CN105514432A (en) | Lithium iron phosphate composite cathode material and preparation method thereof | |
Cheng et al. | High-performance carbon-coated LiMnPO 4 nanocomposites by facile two-step solid-state synthesis for lithium-ion battery | |
Wu et al. | A novel battery scheme: Coupling nanostructured phosphorus anodes with lithium sulfide cathodes | |
CN103094567A (en) | Anode material of lithium fast ionic conductor compounded lithium battery and preparation method of anode material | |
CN105810900A (en) | High-rate negative electrode material of lithium ion battery and lithium ion battery | |
Li et al. | Enhancement of Nb-doping on the properties of LiFePO 4/C prepared via a high-temperature ball milling–based method | |
Zhang et al. | Regenerated LiFePO4/C for scrapped lithium iron phosphate powder batteries by pre-oxidation and reduction method | |
Zhang et al. | Facile synthesis of S-doped LiFePO4@ N/S-doped carbon core–shell structured composites for lithium-ion batteries | |
Du et al. | A three volt lithium ion battery with LiCoPO4 and zero-strain Li4Ti5O12 as insertion material | |
Qiao et al. | Solvothermal preparation and lithium storage properties of Fe2O3/C hybrid microspheres | |
CN107565099B (en) | Positive active material, preparation method thereof and lithium ion battery | |
CN111313010A (en) | Preparation method of high-capacity lithium ion battery anode material lithium iron phosphate | |
Lin et al. | Electrochemical performance of LiFePO4/Si composites as cathode material for lithium ion batteries | |
Zhang et al. | Preparation of LiFe 0.98 M 0.02 PO 4/C cathode material for lithium-ion battery | |
Lou et al. | Recycle cathode materials from spent lithium-ion batteries by an innovative method |