Huang et al., 2023 - Google Patents
A multifunctional LaFeO3 nanocages modified separator for propelling polysulfides chemisorption and catalytic conversion in Li-S batteriesHuang et al., 2023
View PDF- Document ID
- 15779281937136116280
- Author
- Huang Y
- Huang M
- Liu H
- Wang M
- Tu C
- Publication year
- Publication venue
- Electrochimica Acta
External Links
Snippet
The sluggish reaction kinetics of sulfur and the shuttle effect of intermediate polysulfides are the thorny issues for the commercialization of Li-S batteries. Commercial polypropylene separators cannot prevent the shuttling of polysulfides due to their large porosity. Therefore …
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
- Y02E60/52—Fuel cells characterised by type or design
- Y02E60/521—Proton Exchange Membrane Fuel Cells [PEMFC]
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Polar and conductive iron carbide@ N-doped porous carbon nanosheets as a sulfur host for high performance lithium sulfur batteries | |
Ma et al. | VN quantum dots anchored N-doped carbon nanosheets as bifunctional interlayer for high-performance lithium-metal and lithium-sulfur batteries | |
Yuan et al. | Polysulfides anchoring and enhanced electrochemical kinetics of 3D flower-like FeS/carbon assembly materials for lithium-sulfur battery | |
Xiong et al. | Modified separators boost polysulfides adsorption-catalysis in lithium-sulfur batteries from Ni@ Co hetero-nanocrystals into CNT-porous carbon dual frameworks | |
Liang et al. | Cubic pyrite nickel sulfide nanospheres decorated with Ketjen black@ sulfur composite for promoting polysulfides redox kinetics in lithium-sulfur batteries | |
Liu et al. | Combustion synthesized macroporous structure MFe2O4 (M= Zn, Co) as anode materials with excellent electrochemical performance for lithium ion batteries | |
Qian et al. | Nickel‑cobalt selenide@ N-doped carbon towards high-performance anode materials for sodium-ion batteries | |
Ma et al. | Ultrafine NbN nanoparticle decorated nitrogen-doped carbon nanosheets with efficient polysulfide catalytic conversion for superior Li–S batteries | |
Wei et al. | High-performance Li-S batteries enabled by polysulfide-infiltrated free-standing 3D carbon cloth with CeO2 nanorods decoration | |
Lu et al. | Functional separators prepared via in-situ growth of hollow CoSO4 hydrate arrays on pristine polypropylene membrane for high performance lithium-Sulfur batteries | |
Qian et al. | MOF drived MnO/N–C/CNT composite and its modified separator for advanced Li–S battery | |
Wang et al. | Uniformly distributed 1T/2H-MoS2 nanosheets integrated by melamine foam-templated 3D graphene aerogels as efficient polysulfides trappers and catalysts in lithium-sulfur batteries | |
Yu et al. | Promoting polysulfide redox kinetics by Co9S8 nanoparticle-embedded in N-doped carbon nanotube hollow polyhedron for lithium sulfur batteries | |
Gao et al. | Boron nitride nanosheets wrapped by reduced graphene oxide for promoting polysulfides adsorption in lithium-sulfur batteries | |
Dong et al. | High performance of mesoporous γ-Fe2O3 nanoparticle/Ketjen black composite as anode material for lithium ion batteries | |
Huang et al. | A multifunctional LaFeO3 nanocages modified separator for propelling polysulfides chemisorption and catalytic conversion in Li-S batteries | |
Kim et al. | Orthorhombically distorted perovskite SeZnO3 nanosheets as an electrocatalyst for lithium-oxygen batteries | |
Cao et al. | Simple template fabrication of porous MnCo2O4 hollow nanocages as high-performance cathode catalysts for rechargeable Li-O2 batteries | |
Yao et al. | Tailoring nickel–cobalt bimetallic alloy as highly effective catalyst in modified separators for high-performance lithium-sulfur batteries | |
Wen et al. | An interwoven carbon nanotubes/cerium dioxide electrocatalyst accelerating the conversion kinetics of lithium sulfide toward high-performance lithium-sulfur batteries | |
Li et al. | NiCo‐Layered Double Hydroxide to Composite with Sulfur as Cathodes for High‐Performance Lithium‐Sulfur Batteries | |
Deng et al. | CNTs decorated Cu-BTC with catalytic effect for high-stability lithium-sulfur batteries | |
Xu et al. | Cyanometallic framework-derived dual-buffer structure of Sn-Co based nanocomposites for high-performance lithium storage | |
Wang et al. | Lithiated VO2 (M)@ Carbon Fibers Hybrid Host for Improving the Cycling Stability of Sulfur Cathode in Lithium‐Sulfur Batteries | |
Pu et al. | Fe3P electrocatalysts assisted carbon based sandwich sulfur cathode “top–bottom” strategy for high rate and high temperature lithium–sulfur batteries |