Yuan et al., 2015 - Google Patents
Improved electrochemical performance of Fe-substituted NaNi0. 5Mn0. 5O2 cathode materials for sodium-ion batteriesYuan et al., 2015
- Document ID
- 15593980681076512605
- Author
- Yuan D
- Wang Y
- Cao Y
- Ai X
- Yang H
- Publication year
- Publication venue
- ACS applied materials & interfaces
External Links
Snippet
A series of O3-phase NaFe x (Ni0. 5Mn0. 5) 1–x O2 (x= 0, 0.1, 0.2, 0.3, 0.4, and 1) samples with different Fe contents was prepared and investigated as high-capacity cathodic hosts of Na-ion batteries. The partial substitution of Ni and Mn with Fe in the O3-phase lattice can …
- 229910001415 sodium ion 0 title abstract description 276
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Yuan et al. | Improved electrochemical performance of Fe-substituted NaNi0. 5Mn0. 5O2 cathode materials for sodium-ion batteries | |
Yao et al. | Synergistically enhanced electrochemical performance of Ni-rich cathode materials for lithium-ion batteries by K and Ti co-modification | |
Zhou et al. | What limits the capacity of layered oxide cathodes in lithium batteries? | |
Adil et al. | Practical aqueous calcium-ion battery full-cells for future stationary storage | |
Manthiram | An outlook on lithium ion battery technology | |
Yu et al. | Understanding the multiple effects of TiO2 coating on NaMn0. 33Fe0. 33Ni0. 33O2 cathode material for Na-ion batteries | |
Wang et al. | Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping | |
Li et al. | Unveiling the Role of Co in Improving the High-Rate Capability and Cycling Performance of Layered Na0. 7Mn0. 7Ni0. 3–x Co x O2 Cathode Materials for Sodium-Ion Batteries | |
Su et al. | High-rate structure-gradient Ni-rich cathode material for lithium-ion batteries | |
Qi et al. | Design and comparative study of O3/P2 hybrid structures for room temperature sodium-ion batteries | |
Ren et al. | Activation of sodium storage sites in Prussian blue analogues via surface etching | |
Pang et al. | Effects of fluorine and chromium doping on the performance of lithium-rich Li1+ x MO2 (M= Ni, Mn, Co) positive electrodes | |
Oh et al. | Advanced Na [Ni0. 25Fe0. 5Mn0. 25] O2/C–Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage | |
Bucher et al. | Layered Na x MnO2+ z in Sodium Ion Batteries–Influence of Morphology on Cycle Performance | |
Yao et al. | Suppression of monoclinic phase transitions of O3-type cathodes based on electronic delocalization for Na-ion batteries | |
Wu et al. | Aligned Li+ tunnels in core–shell Li (Ni x Mn y Co z) O2@ LiFePO4 enhances its high voltage cycling stability as Li-ion battery cathode | |
Xie et al. | The role of sodium in LiNi0. 8Co0. 15Al0. 05O2 cathode material and its electrochemical behaviors | |
Li et al. | Synthesis method for long cycle life lithium-ion cathode material: Nickel-rich core–shell LiNi0. 8Co0. 1Mn0. 1O2 | |
Tian et al. | High-rate and cycling-stable nickel-rich cathode materials with enhanced Li+ diffusion pathway | |
Jiang et al. | Suppressed the high-voltage phase transition of P2-type oxide cathode for high-performance sodium-ion batteries | |
Oh et al. | High capacity O3-type Na [Li0. 05 (Ni0. 25Fe0. 25Mn0. 5) 0.95] O2 cathode for sodium ion batteries | |
Li et al. | Electrochemical kinetics of the Li [Li0. 23Co0. 3Mn0. 47] O2 cathode material studied by GITT and EIS | |
Xiang et al. | Understanding the effect of Co3+ substitution on the electrochemical properties of lithium-rich layered oxide cathodes for lithium-ion batteries | |
Feng et al. | Stable electrochemical properties of magnesium-doped Co-free layered P2-type Na0. 67Ni0. 33Mn0. 67O2 cathode material for sodium ion batteries | |
Lu et al. | Nanoscale coating of LiMO2 (M= Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: toward better rate capabilities for Li-ion batteries |