Nothing Special   »   [go: up one dir, main page]

Yuan et al., 2015 - Google Patents

Improved electrochemical performance of Fe-substituted NaNi0. 5Mn0. 5O2 cathode materials for sodium-ion batteries

Yuan et al., 2015

Document ID
15593980681076512605
Author
Yuan D
Wang Y
Cao Y
Ai X
Yang H
Publication year
Publication venue
ACS applied materials & interfaces

External Links

Snippet

A series of O3-phase NaFe x (Ni0. 5Mn0. 5) 1–x O2 (x= 0, 0.1, 0.2, 0.3, 0.4, and 1) samples with different Fe contents was prepared and investigated as high-capacity cathodic hosts of Na-ion batteries. The partial substitution of Ni and Mn with Fe in the O3-phase lattice can …
Continue reading at pubs.acs.org (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • H01M4/5825Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/13Ultracapacitors, supercapacitors, double-layer capacitors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes

Similar Documents

Publication Publication Date Title
Yuan et al. Improved electrochemical performance of Fe-substituted NaNi0. 5Mn0. 5O2 cathode materials for sodium-ion batteries
Yao et al. Synergistically enhanced electrochemical performance of Ni-rich cathode materials for lithium-ion batteries by K and Ti co-modification
Zhou et al. What limits the capacity of layered oxide cathodes in lithium batteries?
Adil et al. Practical aqueous calcium-ion battery full-cells for future stationary storage
Manthiram An outlook on lithium ion battery technology
Yu et al. Understanding the multiple effects of TiO2 coating on NaMn0. 33Fe0. 33Ni0. 33O2 cathode material for Na-ion batteries
Wang et al. Superior-performance aqueous zinc ion battery based on structural transformation of MnO2 by rare earth doping
Li et al. Unveiling the Role of Co in Improving the High-Rate Capability and Cycling Performance of Layered Na0. 7Mn0. 7Ni0. 3–x Co x O2 Cathode Materials for Sodium-Ion Batteries
Su et al. High-rate structure-gradient Ni-rich cathode material for lithium-ion batteries
Qi et al. Design and comparative study of O3/P2 hybrid structures for room temperature sodium-ion batteries
Ren et al. Activation of sodium storage sites in Prussian blue analogues via surface etching
Pang et al. Effects of fluorine and chromium doping on the performance of lithium-rich Li1+ x MO2 (M= Ni, Mn, Co) positive electrodes
Oh et al. Advanced Na [Ni0. 25Fe0. 5Mn0. 25] O2/C–Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage
Bucher et al. Layered Na x MnO2+ z in Sodium Ion Batteries–Influence of Morphology on Cycle Performance
Yao et al. Suppression of monoclinic phase transitions of O3-type cathodes based on electronic delocalization for Na-ion batteries
Wu et al. Aligned Li+ tunnels in core–shell Li (Ni x Mn y Co z) O2@ LiFePO4 enhances its high voltage cycling stability as Li-ion battery cathode
Xie et al. The role of sodium in LiNi0. 8Co0. 15Al0. 05O2 cathode material and its electrochemical behaviors
Li et al. Synthesis method for long cycle life lithium-ion cathode material: Nickel-rich core–shell LiNi0. 8Co0. 1Mn0. 1O2
Tian et al. High-rate and cycling-stable nickel-rich cathode materials with enhanced Li+ diffusion pathway
Jiang et al. Suppressed the high-voltage phase transition of P2-type oxide cathode for high-performance sodium-ion batteries
Oh et al. High capacity O3-type Na [Li0. 05 (Ni0. 25Fe0. 25Mn0. 5) 0.95] O2 cathode for sodium ion batteries
Li et al. Electrochemical kinetics of the Li [Li0. 23Co0. 3Mn0. 47] O2 cathode material studied by GITT and EIS
Xiang et al. Understanding the effect of Co3+ substitution on the electrochemical properties of lithium-rich layered oxide cathodes for lithium-ion batteries
Feng et al. Stable electrochemical properties of magnesium-doped Co-free layered P2-type Na0. 67Ni0. 33Mn0. 67O2 cathode material for sodium ion batteries
Lu et al. Nanoscale coating of LiMO2 (M= Ni, Co, Mn) nanobelts with Li+-conductive Li2TiO3: toward better rate capabilities for Li-ion batteries