Lv et al., 2021 - Google Patents
Aptamer-functionalized metal-organic frameworks (MOFs) for biosensingLv et al., 2021
View HTML- Document ID
- 15194394065157406986
- Author
- Lv M
- Zhou W
- Tavakoli H
- Bautista C
- Xia J
- Wang Z
- Li X
- Publication year
- Publication venue
- Biosensors and Bioelectronics
External Links
Snippet
As a class of crystalline porous materials, metal-organic frameworks (MOFs) have attracted increasing attention. Due to the nanoscale framework structure, adjustable pore size, large specific surface area, and good chemical stability, MOFs have been applied widely in many …
- 238000001514 detection method 0 abstract description 103
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay
- G01N33/543—Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals
- G01N33/54366—Apparatus specially adapted for solid-phase testing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay
- G01N33/543—Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals
- G01N33/54313—Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay
- G01N33/543—Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals
- G01N33/54353—Immunoassay; Biospecific binding assay with an insoluble carrier for immobilising immunochemicals with ligand attached to the carrier via a chemical coupling agent
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/585—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with a particulate label, e.g. coloured latex
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/48—Investigating or analysing materials by specific methods not covered by the preceding groups biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/58—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
- G01N33/582—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances with fluorescent label
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICRO-ORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the means of detection
- C12Q1/6825—Nucleic acid detection involving sensors
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES OR MICRO-ORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or micro-organisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6813—Hybridisation assays
- C12Q1/6816—Hybridisation assays characterised by the means of detection
- C12Q1/682—Signal amplification
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Lv et al. | Aptamer-functionalized metal-organic frameworks (MOFs) for biosensing | |
Muhammad et al. | A review of aptamer-based SERS biosensors: Design strategies and applications | |
Chang et al. | One-step synthesis of methylene blue-encapsulated zeolitic imidazolate framework for dual-signal fluorescent and homogeneous electrochemical biosensing | |
Villalonga et al. | Electrochemical biosensors based on nucleic acid aptamers | |
Du et al. | Nucleic acid biosensors: recent advances and perspectives | |
Wu et al. | From electrochemistry to electroluminescence: development and application in a ratiometric aptasensor for aflatoxin B1 | |
Lu et al. | Illuminating the nanomaterials triggered signal amplification in electrochemiluminescence biosensors for food safety: mechanism and future perspectives | |
Hasanzadeh et al. | Nanomaterials for use in immunosensing of carcinoembryonic antigen (CEA): Recent advances | |
Nooranian et al. | Biosensors based on aptamer‐conjugated gold nanoparticles: a review | |
Robati et al. | Aptasensors for quantitative detection of kanamycin | |
Lei et al. | Signal amplification using functional nanomaterials for biosensing | |
Ma et al. | Sensitive insulin detection based on electrogenerated chemiluminescence resonance energy transfer between Ru (bpy) 32+ and Au nanoparticle-doped β-cyclodextrin-Pb (II) metal–organic framework | |
Rampazzo et al. | Nanoparticles in metal complexes-based electrogenerated chemiluminescence for highly sensitive applications | |
Bertoncello et al. | Analytical applications of nanomaterials in electrogenerated chemiluminescence | |
Khonsari et al. | Recent trends in electrochemiluminescence aptasensors and their applications | |
Guo et al. | Graphene and its derivative-based sensing materials for analytical devices | |
Zhu et al. | Electrochemiluminescence immunosensor based on Au nanocluster and hybridization chain reaction signal amplification for ultrasensitive detection of cardiac troponin I | |
Ning et al. | A dual functional self-enhanced electrochemiluminescent nanohybrid for label-free microRNA detection | |
Su et al. | Strategies in liquid-phase chemiluminescence and their applications in bioassay | |
Yu et al. | Gold nanoclusters@ Ru (bpy) 32+-layered double hydroxide ultrathin film as a cathodic electrochemiluminescence resonance energy transfer probe | |
Kurup et al. | Nanomaterials as signal amplification elements in aptamer-based electrochemiluminescent biosensors | |
Bagheri et al. | Sensors design based on hybrid gold-silica nanostructures | |
Dong et al. | Graphene/aptamer probes for small molecule detection: from in vitro test to in situ imaging | |
Shafiei-Irannejad et al. | Advanced nanomaterials towards biosensing of insulin: analytical approaches | |
Liu et al. | Aptamer based electrochemiluminescent thrombin assay using carbon dots anchored onto silver-decorated polydopamine nanospheres |