Joroughi et al., 2018 - Google Patents
Deploying joint beam hopping and precoding in multibeam satellite networks with time variant trafficJoroughi et al., 2018
View PDF- Document ID
- 15149689085222711336
- Author
- Joroughi V
- Lagunas E
- Andrenacci S
- Maturo N
- Chatzinotas S
- Grotz J
- Ottersten B
- Publication year
- Publication venue
- 2018 IEEE Global Conference on Signal and Information Processing (GlobalSIP)
External Links
Snippet
This paper studies the application of Beam Hopping (BH) as a key enabler to provide high level of flexibility to manage scarce on-board resources, particularly power, based on the irregular and time variant traffic requests/demands distributed within the coverage of a …
- 238000005286 illumination 0 abstract description 3
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18513—Transmission in a satellite or space-based system
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1853—Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
- H04B7/18539—Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
- H04B7/18543—Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for adaptation of transmission parameters, e.g. power control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18519—Operations control, administration or maintenance
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/18578—Satellite systems for providing broadband data service to individual earth stations
- H04B7/18584—Arrangements for data networking, i.e. for data packet routing, for congestion control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/185—Space-based or airborne stations; Stations for satellite systems
- H04B7/1851—Systems using a satellite or space-based relay
- H04B7/18515—Transmission equipment in satellites or space-based relays
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/06—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
- H04B7/0613—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
- H04B7/0615—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
- H04B7/0619—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
- H04B7/0621—Feedback content
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0456—Selection of precoding matrices or codebooks, e.g. using matrices antenna weighting
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/14—Relay systems
- H04B7/15—Active relay systems
- H04B7/204—Multiple access
- H04B7/2041—Spot beam multiple access
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/04—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
- H04B7/0413—MIMO systems
- H04B7/0426—Power distribution
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B7/00—Radio transmission systems, i.e. using radiation field
- H04B7/02—Diversity systems; Multi-antenna systems, i.e. transmission or reception using multiple antennas
- H04B7/022—Site diversity; Macro-diversity
- H04B7/024—Co-operative use of antennas of several sites, e.g. in co-ordinated multipoint or co-operative multiple-input multiple-output [MIMO] systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L25/00—Baseband systems
- H04L25/02—Details ; Arrangements for supplying electrical power along data transmission lines
- H04L25/03—Shaping networks in transmitter or receiver, e.g. adaptive shaping networks ; Receiver end arrangements for processing baseband signals
- H04L25/03006—Arrangements for removing intersymbol interference
- H04L25/03343—Arrangements at the transmitter end
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATIONS NETWORKS
- H04W16/00—Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Joroughi et al. | Deploying joint beam hopping and precoding in multibeam satellite networks with time variant traffic | |
Cocco et al. | Radio resource management optimization of flexible satellite payloads for DVB-S2 systems | |
Lei et al. | Multibeam satellite frequency/time duality study and capacity optimization | |
Christopoulos et al. | Linear and nonlinear techniques for multibeam joint processing in satellite communications | |
Zheng et al. | Generic optimization of linear precoding in multibeam satellite systems | |
Lei et al. | Joint power and carrier allocation for the multibeam satellite downlink with individual SINR constraints | |
Arnau et al. | Performance study of multiuser interference mitigation schemes for hybrid broadband multibeam satellite architectures | |
Zhang et al. | Joint precoding schemes for flexible resource allocation in high throughput satellite systems based on beam hopping | |
CN111162824B (en) | A MIMO-based multi-beam high-throughput satellite communication system and implementation method | |
Ge et al. | Joint user pairing and power allocation for NOMA-based GEO and LEO satellite network | |
Christopoulos et al. | Linear precoding in multibeam satcoms: Practical constraints | |
US11223418B2 (en) | Multi-band satellite terminal estimating a second band based on first band link conditions | |
Kibria et al. | Carrier aggregation in satellite communications: Impact and performance study | |
Honnaiah et al. | Demand-based scheduling for precoded multibeam high-throughput satellite systems | |
Roumeliotis et al. | Dynamic capacity allocation in smart gateway high throughput satellite systems using matching theory | |
An et al. | NOMA based satellite communication networks: architectures, techniques and challenges | |
Sellathurai et al. | User selection for multi-beam satellite channels: A stochastic geometry perspective | |
Wang et al. | On fairness optimization for NOMA-enabled multi-beam satellite systems | |
Zhu et al. | Geographical NOMA-beamforming in multi-beam satellite-based Internet of Things | |
Guidotti et al. | Feeder link precoding for future broadcasting services | |
Barceló-Lladó et al. | Distributed power and carrier allocation in multibeam satellite uplink with individual SINR constraints | |
Joroughi et al. | Multiple gateway precoding with per feed power constraints for multibeam satellite systems | |
Vidal et al. | Joint power, frequency and precoding optimisation in a satellite sdma communication system | |
Kyrgiazos et al. | Gateway diversity via flexible resource allocation in a multibeam SS-TDMA system | |
Christopoulos et al. | Multibeam joint precoding: Frame-based design |