Nothing Special   »   [go: up one dir, main page]

Wei et al., 2015 - Google Patents

Surface-eroding poly (ortho ester amides) for highly efficient oral chemotherapy

Wei et al., 2015

Document ID
14939099864195452132
Author
Wei B
Tao Y
Wang X
Tang R
Wang J
Wang R
Qiu L
Publication year
Publication venue
ACS Applied Materials & Interfaces

External Links

Snippet

Two new poly (ortho ester amide) copolymers (POEA-4 and POEA-5) were synthesized via polycondensation of a new ortho ester diamine monomer with active esters of different aliphatic diacids. The kinetics of POEA mass loss and release of 5-FU were both nearly zero …
Continue reading at pubs.acs.org (other versions)

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/51Nanocapsules; Nanoparticles
    • A61K9/5107Excipients; Inactive ingredients
    • A61K9/513Organic macromolecular compounds; Dendrimers
    • A61K9/5146Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
    • A61K9/5153Polyesters, e.g. poly(lactide-co-glycolide)
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/14Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
    • A61K9/16Agglomerates; Granulates; Microbeadlets; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
    • A61K9/1605Excipients; Inactive ingredients
    • A61K9/1629Organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/48Preparations in capsules, e.g. of gelatin, of chocolate
    • A61K9/50Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
    • A61K9/5005Wall or coating material
    • A61K9/5021Organic macromolecular compounds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
    • A61K47/48Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
    • A61K47/48769Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form
    • A61K47/48853Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere
    • A61K47/48876Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core
    • A61K47/48884Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core the form being a nanoparticle, e.g. an immuno-nanoparticle
    • A61K47/48892Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a particulate, powder, adsorbate, bead, sphere the form being a solid micro- or nanoparticle having no hollow or gas-filled core the form being a nanoparticle, e.g. an immuno-nanoparticle the material constituting the nanoparticle being a polymer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/10Dispersions; Emulsions
    • A61K9/107Emulsions; Emulsion preconcentrates; Micelles
    • A61K9/1075Microemulsions or submicron emulsions; Preconcentrates or solids thereof; Micelles, e.g. made of phospholipids or block copolymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K9/00Medicinal preparations characterised by special physical form
    • A61K9/0012Galenical forms characterised by the site of application
    • A61K9/0019Injectable compositions; Intramuscular, intravenous, arterial, subcutaneous administration; Compositions to be administered through the skin in an invasive manner
    • A61K9/0024Solid, semi-solid or solidifying implants, which are implanted or injected in body tissue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
    • A61K47/48Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
    • A61K47/48169Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the modifying agent being an organic macromolecular compound, i.e. an oligomeric, polymeric, dendrimeric molecule
    • A61K47/48192Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the modifying agent being an organic macromolecular compound, i.e. an oligomeric, polymeric, dendrimeric molecule the organic macromolecular compound has been obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas, polyurethanes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
    • A61K47/48Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates
    • A61K47/48769Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form
    • A61K47/48792Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives the non-active ingredient being chemically bound to the active ingredient, e.g. polymer drug conjugates the conjugate being characterized by a special physical or galenical form the form being a colloid, emulsion, i.e. having at least a dispersed/continuous oil phase and a dispersed/continuous aqueous phase, dispersion or suspension
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers, inert additives
    • A61K47/30Macromolecular compounds
    • A61K47/34Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyesters, polyamino acids, polysiloxanes, copolymers of polyalkylene glycol or poloxamer
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL, OR TOILET PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/70Carbohydrates; Sugars; Derivatives thereof

Similar Documents

Publication Publication Date Title
Wei et al. Surface-eroding poly (ortho ester amides) for highly efficient oral chemotherapy
Alsaab et al. PLGA-based nanomedicine: history of advancement and development in clinical applications of multiple diseases
Yu et al. In vitro and in vivo evaluation of pectin-based nanoparticles for hepatocellular carcinoma drug chemotherapy
Kim et al. Hyaluronic acid derivatives for translational medicines
Chen et al. Translatable high drug loading drug delivery systems based on biocompatible polymer nanocarriers
Luan et al. Hyaluronic-acid-based pH-sensitive nanogels for tumor-targeted drug delivery
Song et al. Synthesis of CSK-DEX-PLGA nanoparticles for the oral delivery of exenatide to improve its mucus penetration and intestinal absorption
Chuan et al. Novel free-paclitaxel-loaded redox-responsive nanoparticles based on a disulfide-linked poly (ethylene glycol)–drug conjugate for intracellular drug delivery: synthesis, characterization, and antitumor activity in vitro and in vivo
Yang et al. Galactose-decorated cross-linked biodegradable poly (ethylene glycol)-b-poly (ε-caprolactone) block copolymer micelles for enhanced hepatoma-targeting delivery of paclitaxel
Joshi et al. Carboxymethyl-chitosan-tethered lipid vesicles: hybrid nanoblanket for oral delivery of paclitaxel
Narmani et al. Biomedical applications of PLGA nanoparticles in nanomedicine: advances in drug delivery systems and cancer therapy
Huang et al. Bridging the gap between macroscale drug delivery systems and nanomedicines: a nanoparticle-assembled thermosensitive hydrogel for peritumoral chemotherapy
Samarajeewa et al. In vitro efficacy of paclitaxel-loaded dual-responsive shell cross-linked polymer nanoparticles having orthogonally degradable disulfide cross-linked corona and polyester core domains
Colombo et al. Tunable Degradation Behavior of PEGylated Polyester-Based Nanoparticles Obtained Through Emulsion Free Radical Polymerization.
Yang et al. Bioresponsive chimaeric nanopolymersomes enable targeted and efficacious protein therapy for human lung cancers in vivo
Wu et al. Rod-shaped micelles based on PHF-g-(PCL-PEG) with pH-triggered doxorubicin release and enhanced cellular uptake
Chandrasiri et al. Self-assembling PCL–PAMAM Linear Dendritic Block Copolymers (LDBCs) for bioimaging and phototherapeutic applications
Tao et al. Reduction-responsive gold-nanoparticle-conjugated Pluronic micelles: an effective anti-cancer drug delivery system
Zhao et al. Zwitterionic polymer micelles with dual conjugation of doxorubicin and curcumin: synergistically enhanced efficacy against multidrug-resistant tumor cells
Giarra et al. Spontaneous arrangement of a tumor targeting hyaluronic acid shell on irinotecan loaded PLGA nanoparticles
Xiang et al. Facile fabrication of nanoparticles with dual-targeting ligands for precise hepatocellular carcinoma therapy in vitro and in vivo
Chinnagounder Periyasamy et al. Nanomaterials for the local and targeted delivery of osteoarthritis drugs
Colombo et al. PEGylated nanoparticles obtained through emulsion polymerization as paclitaxel carriers
Wan et al. Polymeric micelles with reduction-responsive function for targeted cancer chemotherapy
Braatz et al. Toolbox of Biodegradable Dendritic (Poly glycerol sulfate)–SS-poly (ester) Micelles for Cancer Treatment: Stability, Drug Release, and Tumor Targeting