Zhang et al., 2021 - Google Patents
Rational design of core‐shell ZnTe@ N‐doped carbon nanowires for high gravimetric and volumetric alkali metal ion storageZhang et al., 2021
View PDF- Document ID
- 14501715799647572889
- Author
- Zhang S
- Qiu L
- Zheng Y
- Shi Q
- Zhou T
- Sencadas V
- Xu Y
- Zhang S
- Zhang L
- Zhang C
- Zhang C
- Yu S
- Guo Z
- Publication year
- Publication venue
- Advanced Functional Materials
External Links
Snippet
Among the various semiconductor materials, zinc telluride possesses the lowest electron affinity and ultrafast charge separation capability, facilitating improved charge transfer kinetics. In addition, ZnTe has a relatively high density, contributing to high volumetric …
- 229910007709 ZnTe 0 title abstract description 184
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E10/00—Energy generation through renewable energy sources
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhang et al. | Rational design of core‐shell ZnTe@ N‐doped carbon nanowires for high gravimetric and volumetric alkali metal ion storage | |
Zhao et al. | Electrostatically assembling 2D nanosheets of MXene and MOF‐derivatives into 3D hollow frameworks for enhanced lithium storage | |
Sun et al. | Construction of bimetallic selenides encapsulated in nitrogen/sulfur co‐doped hollow carbon nanospheres for high‐performance sodium/potassium‐ion half/full batteries | |
Ou et al. | A new rGO‐overcoated Sb2Se3 nanorods anode for Na+ battery: in Situ X‐ray diffraction study on a live sodiation/desodiation process | |
Cui et al. | Water‐soluble salt template‐assisted anchor of hollow FeS2 nanoparticle inside 3D carbon skeleton to achieve fast potassium‐ion storage | |
He et al. | Enhancing the Electrochemical Performance of Sodium‐Ion Batteries by Building Optimized NiS2/NiSe2 Heterostructures | |
Xie et al. | Dual electrostatic assembly of graphene encapsulated nanosheet‐assembled ZnO‐Mn‐C hollow microspheres as a lithium ion battery anode | |
Huang et al. | Conductivity and Pseudocapacitance Optimization of Bimetallic Antimony–Indium Sulfide Anodes for Sodium‐Ion Batteries with Favorable Kinetics | |
Wu et al. | Amorphous red phosphorus embedded in sandwiched porous carbon enabling superior sodium storage performances | |
Li et al. | Smart hybrids of Zn2GeO4 nanoparticles and ultrathin g‐C3N4 layers: synergistic lithium storage and excellent electrochemical performance | |
Xie et al. | Multi-functional bilayer carbon structures with micrometer-level physical encapsulation as a flexible cathode host for high-performance lithium-sulfur batteries | |
Wu et al. | SnS2/Co3S4 hollow nanocubes anchored on S‐doped graphene for ultrafast and stable Na‐ion storage | |
Liu et al. | MnAl Layered Double Hydroxides: A Robust Host for Aqueous Ammonium‐Ion Storage with Stable Plateau and High Capacity | |
Zhang et al. | Constructing Co3S4 Nanosheets Coating N‐Doped Carbon Nanofibers as Freestanding Sulfur Host for High‐Performance Lithium–Sulfur Batteries | |
Zhang et al. | LiFePO4 particles embedded in fast bifunctional conductor rGO&C@ Li3V2 (PO4) 3 nanosheets as cathodes for high‐performance Li‐ion hybrid capacitors | |
Yang et al. | Rational Design of Hierarchical TiO2/Epitaxially Aligned MoS2–Carbon Coupled Interface Nanosheets Core/Shell Architecture for Ultrastable Sodium‐Ion and Lithium–Sulfur Batteries | |
Park et al. | Synthesis process of CoSeO3 microspheres for unordinary Li‐ion storage performances and mechanism of their conversion reaction with Li ions | |
Kong et al. | Iron Selenide‐Based Heterojunction Construction and Defect Engineering for Fast Potassium/Sodium‐Ion Storage | |
Li et al. | Nanodot‐in‐Nanofiber Structured Carbon‐Confined Sb2Se3 Crystallites for Fast and Durable Sodium Storage | |
Li et al. | Highly reversible lithium storage in hierarchical Ca2Ge7O16 nanowire arrays/carbon textile anodes | |
Pan et al. | Highly reversible Na ion storage in N-doped polyhedral carbon-coated transition-metal chalcogenides by optimizing the nanostructure and surface engineering | |
Park et al. | Mesoporous Thorn‐Covered Core–Shell Cathode and 3D Reduced Graphene Oxide Aerogel Composite Anode with Conductive Multivalence Metal Sulfides for High‐Performance Aqueous Hybrid Capacitors | |
Wang et al. | Facile Synthesis of Carbon‐Coated Li3VO4 Anode Material and its Application in Full Cells | |
Na et al. | A Core–Shell Fe/Fe2O3 Nanowire as a High‐Performance Anode Material for Lithium‐Ion Batteries | |
Fu et al. | Size controlling and surface engineering enable NaTi2 (PO4) 3/C outstanding sodium storage properties |