Heinisch et al., 2015 - Google Patents
Application of resonant steel tuning forks with circular and rectangular cross sections for precise mass density and viscosity measurementsHeinisch et al., 2015
View PDF- Document ID
- 1455570294544230803
- Author
- Heinisch M
- Voglhuber-Brunnmaier T
- Reichel E
- Dufour I
- Jakoby B
- Publication year
- Publication venue
- Sensors and Actuators A: Physical
External Links
Snippet
The feasibility of using commercially available steel tuning forks for viscosity and mass density sensing is investigated. For this task, the tuning forks are electromagnetically driven and read out to record their frequency responses containing the fundamental resonant mode …
- 238000005259 measurement 0 title abstract description 43
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/036—Analysing fluids by measuring frequency or resonance of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02818—Density, viscosity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/022—Fluid sensors based on micro-sensors, e.g. quartz crystal-microbalance [QCM], surface acoustic wave [SAW] devices, tuning forks, cantilevers, flexural plate wave [FPW] devices
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/025—Change of phase or condition
- G01N2291/0256—Adsorption, desorption, surface mass change, e.g. on biosensors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/222—Constructional or flow details for analysing fluids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02827—Elastic parameters, strength or force
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/02881—Temperature
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/042—Wave modes
- G01N2291/0427—Flexural waves, plate waves, e.g. Lamb waves, tuning fork, cantilever
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/22—Details, e.g. general constructional or apparatus details
- G01N29/24—Probes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/02—Analysing fluids
- G01N29/024—Analysing fluids by measuring propagation velocity or propagation time of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
- G01N11/10—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Gyroscopic mass flowmeters
- G01F1/8409—Gyroscopic mass flowmeters constructional details
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01F—MEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
- G01F1/00—Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through the meter in a continuous flow
- G01F1/76—Devices for measuring mass flow of a fluid or a fluent solid material
- G01F1/78—Direct mass flowmeters
- G01F1/80—Direct mass flowmeters operating by measuring pressure, force, momentum, or frequency of a fluid flow to which a rotational movement has been imparted
- G01F1/84—Gyroscopic mass flowmeters
- G01F1/845—Gyroscopic mass flowmeters arrangements of measuring means, e.g., of measuring conduits
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N9/00—Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity
- G01N9/002—Investigating density or specific gravity of materials; Analysing materials by determining density or specific gravity using variation of the resonant frequency of an element vibrating in contact with the material submitted to analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N5/00—Analysing materials by weighing, e.g. weighing small particles separated from a gas or liquid
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Heinisch et al. | Application of resonant steel tuning forks with circular and rectangular cross sections for precise mass density and viscosity measurements | |
Heinisch et al. | Reduced order models for resonant viscosity and mass density sensors | |
Jakoby et al. | Miniaturized sensors for the viscosity and density of liquids-performance and issues | |
Toledo et al. | Application of quartz tuning forks and extensional microresonators for viscosity and density measurements in oil/fuel mixtures | |
Heinisch et al. | Tunable resonators in the low kHz range for viscosity sensing | |
Reichel et al. | Analysis and experimental verification of a metallic suspended plate resonator for viscosity sensing | |
WO2001022056A1 (en) | Micromechanical transient sensor for measuring viscosity and density of a fluid | |
Cerimovic et al. | Sensing viscosity and density of glycerol–water mixtures utilizing a suspended plate MEMS resonator | |
Heinisch et al. | Electromagnetically driven torsional resonators for viscosity and mass density sensing applications | |
Heinisch et al. | A u-shaped wire for viscosity and mass density sensing | |
Lucklum et al. | Phononic crystal sensors: A new class of resonant sensors—chances and challenges for the determination of liquid properties | |
Heinisch et al. | A resonating rheometer using two polymer membranes for measuring liquid viscosity and mass density | |
Wang et al. | A contact resonance viscometer based on the electromechanical impedance of a piezoelectric cantilever | |
Rezazadeh et al. | On the Mathematical Modeling of a MEMS-based sensor for simultaneous measurement of fluids viscosity and density | |
Zhao et al. | A new sensitivity-improving method for piezoelectric resonance mass sensors through cantilever cross-section modification | |
Esfahani et al. | An ultrasensitive micropillar-enabled acoustic wave (μPAW) microdevice for real-time viscosity measurement | |
Voglhuber-Brunnmaier et al. | Electromechanical resonators for sensing fluid density and viscosity—A review | |
Ju et al. | Sensing fluid viscosity and density through mechanical impedance measurement using a whisker transducer | |
Toledo et al. | Calibration procedure for piezoelectric MEMS resonators to determine simultaneously density and viscosity of liquids | |
Beardslee et al. | In-plane vibration of hammerhead resonators for chemical sensing applications | |
Stauffenberg et al. | Determination of the mixing ratio of a flowing gas mixture with self-actuated microcantilevers | |
Yilmaz | Theoretical and experimental approaches for fluidic AFM operations and rheological measurements using micro-cantilevers | |
Reichel et al. | Modeling of the fluid-structure interaction in a fluidic sensor cell | |
Reichel et al. | Fluid property sensors | |
Shanmugavalli et al. | Smart Coriolis mass flowmeter |