Nothing Special   »   [go: up one dir, main page]

Wang et al., 2013 - Google Patents

Picocell-density based energy-saving for QoS provisioning in heterogeneous networks

Wang et al., 2013

Document ID
14403574522618749076
Author
Wang L
Zhang X
Zhu W
Song M
Publication year
Publication venue
2013 IEEE Wireless Communications and Networking Conference (WCNC)

External Links

Snippet

In order to reduce the energy consumption, we propose a novel Macro Base Station (MBS) sleep scheme based on the density of Pico Base Station (PBS) including three sleep approaches for current heterogeneous networks (het-net). Our scheme consists of two parts …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC [Transmission power control]
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/243TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0203Power saving arrangements in the radio access network or backbone network of wireless communication networks
    • H04W52/0206Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC [Transmission power control]
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC [Transmission power control]
    • H04W52/30TPC [Transmission power control] using constraints in the total amount of available transmission power
    • H04W52/34TPC management, i.e. sharing limited amount of power among users or channels or data types, e.g. cell loading
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W52/00Power Management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC [Transmission power control]
    • H04W52/38TPC being performed in particular situations
    • H04W52/40TPC being performed in particular situations during macro-diversity or soft handoff
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/12Fixed resource partitioning
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BINDEXING SCHEME RELATING TO CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. INCLUDING HOUSING AND APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B60/00Information and communication technologies [ICT] aiming at the reduction of own energy use
    • Y02B60/50Techniques for reducing energy-consumption in wireless communication networks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W72/00Local resource management, e.g. wireless traffic scheduling or selection or allocation of wireless resources
    • H04W72/04Wireless resource allocation
    • H04W72/08Wireless resource allocation where an allocation plan is defined based on quality criteria
    • H04W72/082Wireless resource allocation where an allocation plan is defined based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchical pre-organized networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/18Network planning tools
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimizing operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATIONS NETWORKS
    • H04W28/00Network traffic or resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control

Similar Documents

Publication Publication Date Title
Bhaumik et al. Breathe to stay cool: adjusting cell sizes to reduce energy consumption
Peng et al. Traffic-driven power saving in operational 3G cellular networks
Sun et al. Downlink power control in cognitive femtocell networks
Cao et al. Improving the energy efficiency of two-tier heterogeneous cellular networks through partial spectrum reuse
US9706490B2 (en) Method for energy saving in a cellular communication system
Arshad et al. Energy efficiency gains through traffic offloading and traffic expansion in joint macro pico deployment
Soh et al. Dynamic sleep mode strategies in energy efficient cellular networks
CN102802247A (en) Hierarchical cellular network base station sleep method based on low-power base station
CN103260192A (en) Home base station and macro base station heterogeneous double-layer network power distribution method based on double utilities
Saker et al. Energy efficiency and capacity of heterogeneous network deployment in LTE-Advanced
Koudouridis et al. Distributed power on-off optimisation for heterogeneous networks-a comparison of autonomous and cooperative optimisation
Nasimi et al. Characterizing energy efficiency for heterogeneous cellular networks
Pan et al. Cell sizing based energy optimization in joint macro-femto deployments via sleep activation
CN106332203A (en) A Green Energy Saving Algorithm in LTE Hierarchical Cell Architecture
Zhou et al. ADMM based algorithm for eICIC configuration in heterogeneous cellular networks
Butt et al. On the energy-bandwidth trade-off in green wireless networks: System level results
Obaid et al. The impact of deploying pico base stations on capacity and energy efficiency of heterogeneous cellular networks
Prasad et al. Enhanced small cell discovery in heterogeneous networks using optimized RF fingerprints
Wang et al. Cell sleeping for energy efficiency in cellular networks: Is it viable?
Wang et al. Picocell-density based energy-saving for QoS provisioning in heterogeneous networks
Peng et al. Performance analysis of switching strategy in LTE-A heterogeneous networks
Bhuvaneswari et al. Improving energy efficiency in LTE‐A networks with the reduction of failure rate in eNB components
Zhou et al. Joint spectrum sharing and ABS adaptation for network virtualization in heterogeneous cellular networks
You et al. A novel cell zooming strategy towards energy efficient based on load balancing in random heterogeneous networks
Jin et al. Dynamic pico switch on/off algorithm for energy saving in heterogeneous networks