Nothing Special   »   [go: up one dir, main page]

Lu et al., 2020 - Google Patents

PointNGCNN: Deep convolutional networks on 3D point clouds with neighborhood graph filters

Lu et al., 2020

Document ID
14370435204393589320
Author
Lu Q
Chen C
Xie W
Luo Y
Publication year
Publication venue
Computers & Graphics

External Links

Snippet

Despite great success of deep neural networks for 2D vision tasks, point clouds, unlike 2D images, cannot be directly applied to traditional convolutional neural networks because of irregularities in the form of data. In this paper, we develop a novel end-to-end deep learning …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30587Details of specialised database models
    • G06F17/30595Relational databases
    • G06F17/30598Clustering or classification
    • G06F17/30601Clustering or classification including cluster or class visualization or browsing
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/30Information retrieval; Database structures therefor; File system structures therefor
    • G06F17/30286Information retrieval; Database structures therefor; File system structures therefor in structured data stores
    • G06F17/30587Details of specialised database models
    • G06F17/30592Multi-dimensional databases and data warehouses, e.g. MOLAP, ROLAP
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • G06K9/4604Detecting partial patterns, e.g. edges or contours, or configurations, e.g. loops, corners, strokes, intersections
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/10Complex mathematical operations
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F17/00Digital computing or data processing equipment or methods, specially adapted for specific functions
    • G06F17/50Computer-aided design
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/40Analysis of texture
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T17/00Three dimensional [3D] modelling, e.g. data description of 3D objects
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F15/00Digital computers in general; Data processing equipment in general
    • G06F15/18Digital computers in general; Data processing equipment in general in which a programme is changed according to experience gained by the computer itself during a complete run; Learning machines
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10024Color image
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation

Similar Documents

Publication Publication Date Title
Lu et al. PointNGCNN: Deep convolutional networks on 3D point clouds with neighborhood graph filters
Yan et al. A graph convolutional neural network for classification of building patterns using spatial vector data
Chen et al. GAPointNet: Graph attention based point neural network for exploiting local feature of point cloud
Wen et al. Airborne LiDAR point cloud classification with global-local graph attention convolution neural network
Wan et al. Mixed local channel attention for object detection
Xie et al. Point clouds learning with attention-based graph convolution networks
Li et al. Multi-scale neighborhood feature extraction and aggregation for point cloud segmentation
CN111242208A (en) Point cloud classification method, point cloud segmentation method and related equipment
Chen et al. RGAM: A novel network architecture for 3D point cloud semantic segmentation in indoor scenes
Zhao et al. Spectral clustering based on iterative optimization for large-scale and high-dimensional data
Zhang et al. Local k-nns pattern in omni-direction graph convolution neural network for 3d point clouds
Wang et al. Densely connected graph convolutional network for joint semantic and instance segmentation of indoor point clouds
He et al. Multi-view based multi-label propagation for image annotation
Wu et al. MPCT: Multiscale point cloud transformer with a residual network
Mo et al. Point-by-point feature extraction of artificial intelligence images based on the Internet of Things
Zhang et al. Graph-PBN: Graph-based parallel branch network for efficient point cloud learning
Huang et al. Edge-based feature extraction module for 3D point cloud shape classification
Zhang et al. Center consistency guided multi-view embedding anchor learning for large-scale graph clustering
Song et al. DSACNN: Dynamically local self-attention CNN for 3D point cloud analysis
Liang et al. PointFusionNet: Point feature fusion network for 3D point clouds analysis
Cheng et al. EDGCNet: Joint dynamic hyperbolic graph convolution and dual squeeze-and-attention for 3D point cloud segmentation
Zhu et al. Point cloud recognition based on lightweight embeddable attention module
Xia et al. A multilevel fusion network for 3D object detection
CN117392424A (en) Three-dimensional point cloud classification method based on multi-geometric double-edge attention network
Ma et al. A novel 3D shape recognition method based on double-channel attention residual network