Wang et al., 2015 - Google Patents
Improved lithium storage performance of lithium sodium titanate anode by titanium site substitution with aluminumWang et al., 2015
- Document ID
- 14223187486509901024
- Author
- Wang P
- Li P
- Yi T
- Lin X
- Zhu Y
- Shao L
- Shui M
- Long N
- Shu J
- Publication year
- Publication venue
- Journal of Power Sources
External Links
Snippet
Abstract Li 2 Na 2 Ti 6 O 14 and its Ti-site substitution Li 2 Na 2 Ti 5.9 M 0.1 O 14 (M= Al, Zr, V) are prepared by a solid-state reaction method and used as anode materials for lithium-ion batteries. It is found that metal doping can effectively enhance the electronic conductivity and …
- 229910052782 aluminium 0 title abstract description 24
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/136—Electrodes based on inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/139—Processes of manufacture
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/04—Processes of manufacture in general
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M2300/00—Electrolytes
- H01M2300/0017—Non-aqueous electrolytes
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Improved lithium storage performance of lithium sodium titanate anode by titanium site substitution with aluminum | |
Mao et al. | O3-type NaNi0. 5Mn0. 5O2 hollow microbars with exposed {0 1 0} facets as high performance cathode materials for sodium-ion batteries | |
Tang et al. | Ag-doped Li2ZnTi3O8 as a high rate anode material for rechargeable lithium-ion batteries | |
Zhao et al. | Synthesis and electrochemical performance of F-doped Li4Ti5O12 for lithium-ion batteries | |
Tian et al. | Ultrathin pre-lithiated V6O13 nanosheet cathodes with enhanced electrical transport and cyclability | |
Lin et al. | Sol–gel synthesis of aluminum doped lithium titanate anode material for lithium ion batteries | |
Wang et al. | Improved performance all-solid-state electrolytes with high compacted density of monodispersed spherical Li1. 3Al0. 3Ti1. 7 (PO4) 3 particles | |
Lin et al. | Lithium barium titanate: a stable lithium storage material for lithium-ion batteries | |
Ge et al. | Unique mesoporous spinel Li4Ti5O12 nanosheets as anode materials for lithium-ion batteries | |
Wang et al. | Novel P2-type Na 2/3 Ni 1/6 Mg 1/6 Ti 2/3 O 2 as an anode material for sodium-ion batteries | |
Wu et al. | Copper/carbon coated lithium sodium titanate as advanced anode material for lithium-ion batteries | |
Tang et al. | High-performance P2-Type Fe/Mn-based oxide cathode materials for sodium-ion batteries | |
Wu et al. | Comparative study of Na2Li2Ti6O14 prepared by different methods as advanced anode material for lithium-ion batteries | |
Wang et al. | Enhanced lithium storage capability of sodium lithium titanate via lithium-site doping | |
Wu et al. | Phase composition and electrochemical performance of sodium lithium titanates as anode materials for lithium rechargeable batteries | |
Son et al. | Carbon coated NASICON type Li3V2-xMx (PO4) 3 (M= Mn, Fe and Al) materials with enhanced cyclability for Li-ion batteries | |
Lin et al. | SrLi2Ti6O14: a probable host material for high performance lithium storage | |
Yang et al. | Structure and electrochemical properties of Sc3+-doped Li4Ti5O12 as anode materials for lithium-ion battery | |
Chen et al. | Complex spinel titanate as an advanced anode material for rechargeable lithium-ion batteries | |
Lin et al. | Improved the lithium storage capability of BaLi2Ti6O14 by electroless silver coating | |
Inamdar et al. | Influence of operating temperature on Li2ZnTi3O8 anode performance and high-rate charging activity of Li-ion battery | |
Cai et al. | Synthesis and optimization of ZnMn2O4 cathode material for zinc-ion battery by citric acid sol-gel method | |
Lao et al. | Preparation and electrochemical characterization of Li2+ xNa2− xTi6O14 (0≤ x≤ 0.2) as anode materials for lithium-ion batteries | |
Nie et al. | Synthesis of LiCr0. 2Ni0. 4Mn1. 4O4 with superior electrochemical performance via a two-step thermo polymerization technique | |
Zhang et al. | Layered structural Zn2Mo3O8 as electrode material for aqueous zinc-ion batteries |