Simson et al., 2008 - Google Patents
Control alternatives for yaw actuated force steered bogiesSimson et al., 2008
View PDF- Document ID
- 14217611149810238501
- Author
- Simson S
- Cole C
- Publication year
- Publication venue
- IFAC Proceedings Volumes
External Links
Snippet
A new design for actively steered bogies (Simson S., 2007) has been proposed for tractive rollingstock to improve not only wheel rail wear and rolling contact fatigue but to also improve wheel rail adhesion. The new bogie design features forced steering with active yaw …
- 239000000725 suspension 0 abstract description 12
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61F—RAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
- B61F5/00—Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
- B61F5/02—Arrangements permitting limited transverse relative movements between vehicle underframe or bolster and bogie; Connections between underframes and bogies
- B61F5/22—Guiding of the vehicle underframes with respect to the bogies
- B61F5/24—Means for damping or minimising the canting, skewing, pitching, or plunging movements of the underframes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61F—RAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
- B61F5/00—Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
- B61F5/38—Arrangements or devices for adjusting or allowing self- adjustment of wheel axles or bogies when rounding curves, e.g. sliding axles, swinging axles
- B61F5/44—Adjustment controlled by movements of vehicle body
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61F—RAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
- B61F3/00—Types of bogies
- B61F3/16—Types of bogies with a separate axle for each wheel
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B61—RAILWAYS
- B61F—RAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
- B61F5/00—Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
- B61F5/26—Mounting or securing axle-boxes in vehicle or bogie underframes
- B61F5/30—Axle-boxes mounted for movement under spring control in vehicle or bogie underframes
- B61F5/308—Axle-boxes mounted for movement under spring control in vehicle or bogie underframes incorporating damping devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B62—LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
- B62D—MOTOR VEHICLES; TRAILERS
- B62D7/00—Steering linkage; Stub axles or their mountings
- B62D7/06—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
- B62D7/14—Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G17/00—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
- B60G17/015—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
- B60G17/016—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input
- B60G17/0162—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking
- B60G17/0163—Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by their responsiveness, when the vehicle is travelling, to specific motion, a specific condition, or driver input mainly during a motion involving steering operation, e.g. cornering, overtaking the control involving steering geometry, e.g. four-wheel steering
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60G—VEHICLE SUSPENSION ARRANGEMENTS
- B60G2400/00—Indexing codes relating to detected, measured or calculated conditions or factors
- B60G2400/05—Attitude
- B60G2400/052—Angular rate
- B60G2400/0522—Pitch rate
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Perez et al. | Control strategies for active steering of bogie-based railway vehicles | |
Goodall et al. | Active suspensions | |
Xu et al. | Active control on path following and lateral stability for truck–trailer combinations | |
IT202100015170A1 (en) | METHOD OF CHECKING THE ACTIVE SHOCK ABSORBERS OF A ROAD VEHICLE INVOLVING THE LOWERING OF THE CENTER OF GRAVITY | |
CN107512262A (en) | A kind of vehicle stability control system tire force distribution method for performing during driving limited space | |
IT202100015182A1 (en) | METHOD OF CONTROLLING THE ACTIVE SHOCK ABSORBERS OF A ROAD VEHICLE INVOLVING ADJUSTMENT OF THE ROLL ANGLE AND THE PITCH ANGLE | |
JPH09226576A (en) | Axle steering device for rolling stock truck | |
Liang et al. | Integration of active tilting control and full-wheel steering control system on vehicle lateral performance | |
Mei et al. | Optimal control strategies for active steering of railway vehicles | |
Fergani et al. | Full vehicle dynamics control based on LPV/ℋ∞ and flatness approaches | |
Simson et al. | Control alternatives for yaw actuated force steered bogies | |
Mei et al. | Kalman filter for the state estimation of a 2-axle railway vehicle | |
Abood et al. | Railway carriage simulation model to study the influence of vertical secondary suspension stiffness on ride comfort of railway carbody | |
Heckmann et al. | From scaled experiments of mechatronic guidance to multibody simulations of DLR’s next generation train set | |
CN110758404B (en) | A fault-tolerant control method for actuator failure of vehicle stability system | |
Kortüm et al. | Mechatronics in ground transportation-current trends and future possibilities | |
JPH01501596A (en) | Railroad vehicle axle that uses electromagnetic guidance | |
CN107544243A (en) | Based on H∞The bullet train lateral semi-active suspension control system and control method of control | |
US6752087B1 (en) | Vehicle with a steerable wheelset | |
Goodall | Tilting trains and beyond. The future for active railway suspensions. 2. Improving stability and guidance | |
JP2983516B2 (en) | Tilt control system for trains | |
Zhang et al. | Research on the path-following control of rubber-tire trackless train with bogies | |
Papagiannis et al. | Enhancing the braking performance of a vehicle through the proper control of the active suspension system | |
Simson et al. | Simulation of traction curving for active yaw—force steered bogies in locomotives | |
JPH08142862A (en) | Bogie for rolling stock |