Nothing Special   »   [go: up one dir, main page]

Wakabayashi et al., 1998 - Google Patents

PALSAR system on the ALOS

Wakabayashi et al., 1998

Document ID
14213599362429014228
Author
Wakabayashi H
Ito N
Hamazaki T
Publication year
Publication venue
Sensors, Systems, and Next-Generation Satellites II

External Links

Snippet

The Phased Array type L-band Synthetic Aperture Radar (PALSAR) on the Advanced Land Observing Satellite (ALOS) is considered to be one of the follow-on sensors of JERS-1 SAR. PALSAR is designed to achieve high radiometric performance as well as observation …
Continue reading at www.spiedigitallibrary.org (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • G01S13/89Radar or analogous systems specially adapted for specific applications for mapping or imaging
    • G01S13/90Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. correcting range migration errors
    • G01S13/9035Particular SAR processing techniques not provided for elsewhere, e.g. squint mode, doppler beam-sharpening mode, spotlight mode, bistatic SAR, inverse SAR
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/40Means for monitoring or calibrating
    • G01S7/4004Means for monitoring or calibrating of parts of a radar system
    • G01S7/4017Means for monitoring or calibrating of parts of a radar system of HF systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/03Details of HF subsystems specially adapted therefor, e.g. common to transmitter and receiver
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/06Arrays of individually energised active aerial units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • H01Q21/065Patch antenna array
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/267Phased-array testing or checking devices
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an aerial or aerial system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S19/00Satellite radio beacon positioning systems; Determining position, velocity or attitude using signals transmitted by such systems

Similar Documents

Publication Publication Date Title
Misra et al. Synthetic aperture radar payload on-board RISAT-1: configuration, technology and performance
Freeman et al. SIR-C data quality and calibration results
Freeman et al. Polarimetric SAR calibration experiment using active radar calibrators
Nemoto et al. Japanese earth resources satellite-1 synthetic aperture radar
Kozu et al. Development of precipitation radar onboard the Tropical Rainfall Measuring Mission (TRMM) satellite
Shimada et al. PALSAR radiometric and geometric calibration
Jordan et al. The SIR-C/X-SAR synthetic aperture radar system
Chapin et al. AirMOSS: An airborne P-band SAR to measure root-zone soil moisture
Stangl et al. TerraSAR-X technologies and first results
Laursen et al. Synthetic aperture radiometry evaluated by a two-channel demonstration model
Wakabayashi et al. PALSAR system on the ALOS
McWatters et al. Antenna auto-calibration and metrology approach for the AFRL/JPL space based radar
Heliere et al. BIOMASS: A P-band SAR earth explorer core mission candidate
Luscombe et al. Polarimetric calibration for RADARSAT-2
Impagnatiello et al. The SkyMed/COSMO system: SAR payload characteristics
Rincon et al. Performance of Swesarr's Multi-Frequency Dual-Polarimetry Synthetic Aperture Radar During Nasa'S Snowex Airborne Campaign
Yoon et al. KOMPSAT-5 SAR design and performance
Skou et al. A high resolution polarimetric L-band SAR-design and first results
Furukawa et al. The orbital checkout status of the dual-frequency precipitation radar on the global precipitation measurement core spacecraft
Christensen et al. The Danish polarimetric SAR for remote sensing applications
Schied et al. The Sentinel-1 C&D SAR Instrument
Wakabayashi et al. Airborne L-band SAR system: Characteristics and initial calibration results
Kim et al. Spaceborne SAR Antennas for
Purdy et al. In orbit active array calibration for NASA's LightSAR
Hara et al. A study on radiometric calibration of next generation spaceborne SAR