Nothing Special   »   [go: up one dir, main page]

Islam et al., 2020 - Google Patents

Deep learning based systems developed for fall detection: a review

Islam et al., 2020

View PDF
Document ID
14003040419885523531
Author
Islam M
Tayan O
Islam M
Islam M
Nooruddin S
Kabir M
Islam M
Publication year
Publication venue
IEEE Access

External Links

Snippet

Accidental falls are a major source of loss of autonomy, deaths, and injuries among the elderly. Accidental falls also have a remarkable impact on the costs of national health systems. Thus, extensive research and development of fall detection and rescue systems …
Continue reading at ieeexplore.ieee.org (PDF) (other versions)

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F19/00Digital computing or data processing equipment or methods, specially adapted for specific applications
    • G06F19/30Medical informatics, i.e. computer-based analysis or dissemination of patient or disease data
    • G06F19/34Computer-assisted medical diagnosis or treatment, e.g. computerised prescription or delivery of medication or diets, computerised local control of medical devices, medical expert systems or telemedicine
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06FELECTRICAL DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/011Arrangements for interaction with the human body, e.g. for user immersion in virtual reality
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00362Recognising human body or animal bodies, e.g. vehicle occupant, pedestrian; Recognising body parts, e.g. hand
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00335Recognising movements or behaviour, e.g. recognition of gestures, dynamic facial expressions; Lip-reading
    • G06K9/00355Recognition of hand or arm movements, e.g. recognition of deaf sign language
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1116Determining posture transitions
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computer systems based on biological models
    • G06N3/02Computer systems based on biological models using neural network models
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6267Classification techniques
    • G06K9/6268Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/00221Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
    • G06K9/00268Feature extraction; Face representation
    • G06K9/00281Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1113Local tracking of patients, e.g. in a hospital or private home
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/36Image preprocessing, i.e. processing the image information without deciding about the identity of the image
    • G06K9/46Extraction of features or characteristics of the image
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Detecting, measuring or recording for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/11Measuring movement of the entire body or parts thereof, e.g. head or hand tremor, mobility of a limb
    • A61B5/1112Global tracking of patients, e.g. by using GPS
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06KRECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K9/00Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
    • G06K9/62Methods or arrangements for recognition using electronic means
    • G06K9/6217Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
    • G06K9/6232Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
    • G06K9/6247Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06NCOMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N99/00Subject matter not provided for in other groups of this subclass

Similar Documents

Publication Publication Date Title
Islam et al. Deep learning based systems developed for fall detection: a review
Espinosa et al. A vision-based approach for fall detection using multiple cameras and convolutional neural networks: A case study using the UP-Fall detection dataset
Yadav et al. ARFDNet: An efficient activity recognition & fall detection system using latent feature pooling
Islam et al. Human activity recognition using tools of convolutional neural networks: A state of the art review, data sets, challenges, and future prospects
Dhiman et al. A review of state-of-the-art techniques for abnormal human activity recognition
Yadav et al. A review of multimodal human activity recognition with special emphasis on classification, applications, challenges and future directions
Harris et al. A survey of human gait-based artificial intelligence applications
Nooruddin et al. Sensor-based fall detection systems: a review
Lu et al. Deep learning for fall detection: Three-dimensional CNN combined with LSTM on video kinematic data
Gochoo et al. Monitoring real-time personal locomotion behaviors over smart indoor-outdoor environments via body-worn sensors
Kour et al. Computer-vision based diagnosis of Parkinson’s disease via gait: A survey
Jeyakumar et al. SenseHAR: a robust virtual activity sensor for smartphones and wearables
Singh et al. Human fall detection using machine learning methods: A survey
Guo et al. Detection and assessment of Parkinson's disease based on gait analysis: A survey
Achanta et al. A novel hidden Markov model-based adaptive dynamic time warping (HMDTW) gait analysis for identifying physically challenged persons
Dargazany et al. WearableDL: Wearable Internet‐of‐Things and Deep Learning for Big Data Analytics—Concept, Literature, and Future
Espinosa et al. Application of convolutional neural networks for fall detection using multiple cameras
Divya et al. Smart healthcare system-a brain-like computing approach for analyzing the performance of detectron2 and PoseNet models for anomalous action detection in aged people with movement impairments
Wu et al. Robust fall detection in video surveillance based on weakly supervised learning
Shah et al. Data portability for activities of daily living and fall detection in different environments using radar micro-doppler
Khan et al. A hierarchical abnormal human activity recognition system based on R-transform and kernel discriminant analysis for elderly health care
Chakraborty et al. Pathological gait detection based on multiple regression models using unobtrusive sensing technology
Liu et al. Automatic fall risk detection based on imbalanced data
Zhang et al. On-device lumbar-pelvic movement detection using dual-IMU: a DNN-based approach
Amsaprabhaa et al. A survey on spatio-temporal framework for kinematic gait analysis in RGB videos