Nothing Special   »   [go: up one dir, main page]

Lin et al., 1996 - Google Patents

Real-time optical image subtraction and edge enhancement using ferroelectric liquid-crystal devices based on speckle modulation

Lin et al., 1996

View HTML
Document ID
13986669834296445100
Author
Lin X
Ohtsubo J
Takemori T
Publication year
Publication venue
Applied optics

External Links

Snippet

We carried out real-time optical image subtraction and edge enhancement based on a speckle modulation technique by using ferroelectric liquid-crystal polarization switches and a ferroelectric liquid-crystal spatial light modulator. A ferroelectric liquid-crystal spatial light …
Continue reading at opg.optica.org (HTML) (other versions)

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/35Non-linear optics
    • G02F1/353Frequency conversion, i.e. wherein a light beam with frequency components different from those of the incident light beams is generated
    • G02F1/3536Four-wave interaction
    • G02F1/3538Four-wave interaction for optical phase conjugation
    • GPHYSICS
    • G02OPTICS
    • G02FDEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
    • G02F1/29Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the position or the direction of light beams, i.e. deflection
    • GPHYSICS
    • G06COMPUTING; CALCULATING; COUNTING
    • G06EOPTICAL COMPUTING DEVICES; COMPUTING DEVICES USING OTHER RADIATIONS WITH SIMILAR PROPERTIES
    • G06E3/00Devices not provided for in group G06E1/00, e.g. for processing analogue or hybrid data
    • G06E3/001Analogue devices in which mathematical operations are carried out with the aid of optical or electro-optical elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infra-red or ultra-violet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0402Recording geometries or arrangements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/42Diffraction optics, i.e. systems including a diffractive element being designed for providing a diffractive effect
    • G02B27/46Systems using spatial filters
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B27/00Other optical systems; Other optical apparatus
    • G02B27/50Optics for phase object visualisation
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infra-red or ultra-violet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infra-red or ultra-violet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/10Spectral composition
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
    • G02B21/00Microscopes

Similar Documents

Publication Publication Date Title
Barnes et al. Phase-only modulation using a twisted nematic liquid crystal television
Sirat et al. Conoscopic holography
Gregory Real-time pattern recognition using a modified liquid crystal television in a coherent optical correlator
Shirai et al. Adaptive wave-front correction by means of all-optical feedback interferometry
Bernet et al. Lensless digital holography with diffuse illumination through a pseudo-random phase mask
JPH06118359A (en) Phase type space optical modulator
Mueller Linear multiple image storage
Zhao et al. 3D focusing through highly scattering media using PSF modulation
Huang et al. Photoanisotropic incoherent-to-coherent optical conversion
Chen et al. Real-time electron-holographic interference microscopy with a liquid-crystal spatial light modulator
Zhang et al. Real-time holographic imaging with a bacteriorhodopsin film
Ramirez et al. Inline digital holographic movie based on a double-sideband filter
Seo et al. Interferometric phase-only optical encryption system that uses a reference wave
Birch et al. Dynamic complex wave-front modulation with an analog spatial light modulator
Lin et al. Real-time optical image subtraction and edge enhancement using ferroelectric liquid-crystal devices based on speckle modulation
Sharp et al. Incoherent-to-coherent conversion using a photorefractive self-pumped phase conjugator
Ryf et al. High-frame-rate joint Fourier-transform correlator based on Sn 2 P 2 S 6 crystal
Liu et al. Real-time VanderLugt optical correlator that uses photorefractive GaAs
Matoba et al. Fast acquisition system for digital holograms and image processing for three-dimensional display with data manipulation
Thoma et al. Adaptive bacteriorhodopsin-based holographic correlator for speed measurement of randomly moving three-dimensional objects
Brodoline et al. Fast and pure phase-shifting off-axis holographic microscopy with a digital micromirror device
Wang et al. Edge enhancement by use of moving gratings in a bismuth silicon oxide crystal and its application to optical correlation
Birch et al. Computer-generated complex filter for an all-optical and a digital-optical hybrid correlator
Falldorf et al. Functional pixels: a pathway towards true holographic displays using today’s display technology
Foote et al. Picosecond optical correlation using dynamic holography in polyacetylene