Nothing Special   »   [go: up one dir, main page]

Song et al., 2019 - Google Patents

Effect of drying time on electrochemical properties of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material

Song et al., 2019

View PDF
Document ID
13714132799871245787
Author
Song C
Feng W
Su W
Chen L
Li M
Publication year
Publication venue
International Journal of Electrochemical Science

External Links

Snippet

Li-rich layered cathode materials were synthesized by the sol-gel method with acetate and citric acid. The effect of drying time on the structure, morphology and electrochemical properties of the prepared material were carefully studied with X-ray diffraction (XRD) …
Continue reading at www.sciencedirect.com (PDF) (other versions)

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technology
    • Y02E60/122Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/13Ultracapacitors, supercapacitors, double-layer capacitors
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/362Composites
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/624Electric conductive fillers
    • H01M4/625Carbon or graphite
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of or comprising active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area

Similar Documents

Publication Publication Date Title
Xi et al. Comparative study of the electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 and LiNi0. 8Co0. 1Mn0. 1O2 cathode materials for lithium ion batteries
CN112670506B (en) Nickel-cobalt-manganese-tantalum composite quaternary positive electrode material coated by fast ion conductor and preparation method thereof
CN111435742A (en) Positive active material, positive pole piece and sodium ion battery
Liu et al. Fluorine doping and Al2O3 coating Co-modified Li [Li0. 20Ni0. 133Co0. 133Mn0. 534] O2 as high performance cathode material for lithium-ion batteries
Yi et al. High-performance xLi2MnO3·(1-x) LiMn1/3Co1/3Ni1/3O2 (0.1⿤ x⿤ 0.5) as Cathode Material for Lithium-ion Battery
Zhou et al. Novel solid-state preparation and electrochemical properties of Li1. 13 [Ni0. 2Co0. 2Mn0. 47] O2 material with a high capacity by acetate precursor for Li-ion batteries
Guo et al. Synthesis and electrochemical properties of high performance polyhedron sphere like lithium manganese oxide for lithium ion batteries
Li et al. Synthesis and electrochemical characterizations of LiMn2O4 prepared by high temperature ball milling combustion method with citric acid as fuel
Chen et al. Enhanced cycling stability of Mg–F co-modified LiNi0. 6Co0. 2Mn0. 2–yMgyO2–zFz for lithium-ion batteries
Zhang et al. The effect of drying methods on the structure and performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode material for lithium-ion batteries
Zhang et al. Controllable synthesis of Co-doped spinel LiMn 2 O 4 nanotubes as cathodes for Li-ion batteries
Li et al. The improvement for the electrochemical performances of LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries by both the Al-doping and an advanced synthetic method
Song et al. Effect of drying time on electrochemical properties of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material
Wei et al. High power LiMn2O4 hollow microsphere cathode materials for lithium ion batteries
He et al. Synthesis and electrochemical properties of chemically substituted LiMn2O4 prepared by a solution-based gel method
Guo et al. Synthesis and properties of LiMn2O4 from hydrazine hydrate reduced electrolytic manganese dioxide
Kim et al. Effects of the fluorine-substitution and acid treatment on the electrochemical performances of 0.3 Li2MnO3· 0.7 LiMn0. 60Ni0. 25Co0. 15O2 cathode material for Li-ion battery
Gustiana et al. Synthesis and Characterization of NMC 811 by Oxalate and Hydroxide Coprecipitation Method
CN110931726A (en) Lithium titanate negative electrode composite material, preparation method thereof and lithium ion battery
ZHONG et al. Synthesis and electrochemical performances of LiNi0. 6Co0. 2Mn0. 2O2 cathode materials
Feng et al. Effect of calcination time on lithium ion diffusion coefficient of LiMg0. 04Mn1. 96O4 prepared by a solid-state combustion method
Wang et al. Uniform AlF3 thin layer to improve rate capability of LiNi1/3Co1/3 Mn1/3O2 material for Li-ion batteries
Chen et al. Effects of Mg, Al Co-doping into Mn site on electrochemical performance of LiNi 0.5 Co 0.2 Mn 0.3 O 2
Dai et al. Synthesis and electrochemical study of LiNi1/3Co1/3Mn1/3O2 cathode materials for lithium-ion batteries by polymer network gel method
Tung et al. Electrochemical properties of LiNi0. 8Co0. 1Mn0. 1O2 synthesized by sol-gel and co-precipitation methods