Wu et al., 2015 - Google Patents
Cube-shaped hierarchical LiNi 1/3 Co 1/3 Mn 1/3 O 2 with enhanced growth of nanocrystal planes as high-performance cathode materials for lithium-ion batteriesWu et al., 2015
- Document ID
- 13605812596015289294
- Author
- Wu Y
- Cao C
- Zhu Y
- Li J
- Wang L
- Publication year
- Publication venue
- Journal of Materials Chemistry A
External Links
Snippet
Hierarchical cubed LiNi1/3Co1/3Mn1/3O2 (CH-NCM) with enhanced growth of electrochemically active planes is synthesized using cube structured MnCO3 as a self- template, which is synthesized by a fast, simple, and surfactant-free co-precipitation method …
- 229910001416 lithium ion 0 title abstract description 10
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/12—Battery technology
- Y02E60/122—Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/583—Carbonaceous material, e.g. graphite-intercalation compounds or CFx
- H01M4/587—Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy
- H01M4/5825—Oxygenated metallic slats or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/362—Composites
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage
- Y02E60/13—Ultracapacitors, supercapacitors, double-layer capacitors
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of or comprising active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wu et al. | Cube-shaped hierarchical LiNi 1/3 Co 1/3 Mn 1/3 O 2 with enhanced growth of nanocrystal planes as high-performance cathode materials for lithium-ion batteries | |
Li et al. | A nanorod-like Ni-rich layered cathode with enhanced Li+ diffusion pathways for high-performance lithium-ion batteries | |
Yang et al. | Stepwise co-precipitation to synthesize LiNi1/3Co1/3Mn1/3O2 one-dimensional hierarchical structure for lithium ion batteries | |
Wang et al. | High‐voltage LiNi0. 45Cr0. 1Mn1. 45O4 cathode with superlong cycle performance for wide temperature lithium‐ion batteries | |
Li et al. | LiNi 1/3 Co 1/3 Mn 1/3 O 2 hollow nano-micro hierarchical microspheres with enhanced performances as cathodes for lithium-ion batteries | |
Yang et al. | Effect of niobium doping on the structure and electrochemical performance of LiNi0. 5Co0. 2Mn0. 3O2 cathode materials for lithium ion batteries | |
Peng et al. | Self-assembled LiNi1/3Co1/3Mn1/3O2 nanosheet cathodes with tunable rate capability | |
Hua et al. | Uncovering a facile large-scale synthesis of LiNi1/3Co1/3Mn1/3O2 nanoflowers for high power lithium-ion batteries | |
Yang et al. | Spinel LiNi 0.5 Mn 1.5 O 4 cathode for rechargeable lithiumion batteries: Nano vs micro, ordered phase (P 4 3 32) vs disordered phase (Fd ̄3 m) | |
Huang et al. | Engineering single crystalline Mn 3 O 4 nano-octahedra with exposed highly active {011} facets for high performance lithium ion batteries | |
Zhou et al. | The enhanced rate performance of LiFe 0.5 Mn 0.5 PO 4/C cathode material via synergistic strategies of surfactant-assisted solid state method and carbon coating | |
Yuan et al. | Effects of Ni and Mn doping on physicochemical and electrochemical performances of LiFePO4/C | |
Li et al. | Uniform Li1. 2Ni0. 13Co0. 13Mn0. 54O2 hollow microspheres with improved electrochemical performance by a facile solvothermal method for lithium ion batteries | |
Chen et al. | Defective mesoporous Li4Ti5O12− y: An advanced anode material with anomalous capacity and cycling stability at a high rate of 20 C | |
Chen et al. | Mesoporous spinel LiMn2O4 cathode material by a soft-templating route | |
Wan et al. | Ni/Mn ratio and morphology-dependent crystallographic facet structure and electrochemical properties of the high-voltage spinel LiNi 0.5 Mn 1.5 O 4 cathode material | |
Shu et al. | Large-scale synthesis of Li 1.15 V 3 O 8 nanobelts and their lithium storage behavior studied by in situ X-ray diffraction | |
Li et al. | Structure and electrochemical performance modulation of a LiNi 0.8 Co 0.1 Mn 0.1 O 2 cathode material by anion and cation co-doping for lithium ion batteries | |
Yao et al. | Multi-shelled porous LiNi0. 5Mn1. 5O4 microspheres as a 5áV cathode material for lithium-ion batteries | |
Quyen et al. | Carbon coated NaLi0. 2Mn0. 8O2 as a superb cathode material for sodium ion batteries | |
Wu et al. | Alleviating structural degradation of nickel-rich cathode material by eliminating the surface Fm3¯ m phase | |
Zhao et al. | Synthesizing LiNi0. 5Co0. 2Mn0. 3O2 with microsized peanut-like structure for enhanced electrochemical properties of lithium ion batteries | |
Du et al. | Synthesis of Lithium vanadium tetroxide anode material via a fast sol-gel method based on spontaneous chemical reactions | |
Xu et al. | Hierarchical hollow structured lithium nickel cobalt manganese oxide microsphere synthesized by template-sacrificial route as high performance cathode for lithium ion batteries | |
Guo et al. | Synthesis and electrochemical properties of high performance polyhedron sphere like lithium manganese oxide for lithium ion batteries |