Aalto et al., 2016 - Google Patents
Integrating III-V, Si, and polymer waveguides for optical interconnects: RAPIDOAalto et al., 2016
View PDF- Document ID
- 13521680698601688687
- Author
- Aalto T
- Harjanne M
- Offrein B
- Caër C
- Neumeyr C
- Malacarne A
- Guina M
- Sheehan R
- Peters F
- Melanen P
- Publication year
- Publication venue
- Optical Interconnects XVI
External Links
Snippet
We present a vision for the hybrid integration of advanced transceivers at 1.3 μm wavelength, and the progress done towards this vision in the EU-funded RAPIDO project. The final goal of the project is to make five demonstrators that show the feasibility of the …
- 230000003287 optical 0 title abstract description 51
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
- G02B6/4204—Packages, e.g. shape, construction, internal or external details the coupling comprising intermediate optical elements, e.g. lenses, holograms
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
- G02B6/1221—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths made from organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
- G02B6/125—Bends, branchings or intersections
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/43—Arrangements comprising a plurality of opto-electronic elements and associated optical interconnections ; Transmitting or receiving optical signals between chips, wafers or boards; Optical backplane assemblies
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/36—Mechanical coupling means
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/015—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on semiconductor elements with at least one potential jump barrier, e.g. PN, PIN junction
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F2201/00—Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
-
- H—ELECTRICITY
- H01—BASIC ELECTRIC ELEMENTS
- H01S—DEVICES USING STIMULATED EMISSION
- H01S5/00—Semiconductor lasers
- H01S5/02—Structural details or components not essential to laser action
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Dong et al. | Silicon photonic devices and integrated circuits | |
Chen et al. | The emergence of silicon photonics as a flexible technology platform | |
Doerr et al. | Silicon photonics in optical coherent systems | |
Doerr | Silicon photonic integration in telecommunications | |
Dong et al. | 112-Gb/s monolithic PDM-QPSK modulator in silicon | |
Chen et al. | Device engineering for silicon photonics | |
US8923664B2 (en) | Method and system for multi-mode integrated receivers | |
Urino et al. | High-density and wide-bandwidth optical interconnects with silicon optical interposers | |
Charbonnier et al. | Silicon photonics for next generation FDM/FDMA PON | |
EP2386891A1 (en) | Transparent photonic integrated circuit | |
US10444593B2 (en) | Method and system for a vertical junction high-speed phase modulator | |
Chang et al. | Integrated hybrid silicon triplexer | |
Xu et al. | Bi-wavelength two dimensional chirped grating couplers for low cost WDM PON transceivers | |
Kleinert et al. | Photonic integrated devices and functions on hybrid polymer platform | |
Keyvaninia et al. | Highly efficient passive InP polarization rotator-splitter | |
Ohyama et al. | Compact hybrid integrated 100-Gb/s transmitter optical sub-assembly using optical butt-coupling between EADFB lasers and silica-based AWG multiplexer | |
Shen et al. | Silicon photonic integrated circuits and its application in data center | |
Aalto et al. | Integrating III-V, Si, and polymer waveguides for optical interconnects: RAPIDO | |
Liu et al. | Low-cost hybrid integrated 4× 25.78 Gb/s CWDM TOSA for 10 km transmission using DFB-LDs and an arrayed waveguide grating multiplexer | |
Hsiao et al. | Compact and passive-alignment 4-channel× 2.5-Gbps optical interconnect modules based on silicon optical benches with 45 micro-reflectors | |
Kazmierski | Electro-absorption-based fast photonic integrated circuit sources for next network capacity scaling | |
Kleinert et al. | Recent progress in InP/polymer-based devices for telecom and data center applications | |
Ledentsov Jr et al. | Advances in design and application of compact VCSEL arrays: from multicore fiber to optical wireless and beyond | |
Nieweglowski et al. | Performance of step index multimode waveguides with tuned numerical aperture for on-board optical links | |
Urino et al. | High-density optical interconnects by using silicon photonics |