Almadhoni et al., 2018 - Google Patents
Particle Size Dependence of MnO Reduction for Fabrication of Composite vir Stir CastingAlmadhoni et al., 2018
View PDF- Document ID
- 13591741741346707085
- Author
- Almadhoni K
- Khan S
- Publication year
External Links
Snippet
In the present work, a composite of Al matrix reinforced with 10% MnO particles has been developed using stir casting technique. MnO with particles size of range of 53 to 90 μm for composite (A) and 188 to 250 μm for composite (B) as reinforcement and pure Mg powder …
- 239000002131 composite material 0 title abstract description 98
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1036—Alloys containing non-metals starting from a melt
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making alloys
- C22C1/10—Alloys containing non-metals
- C22C1/1005—Pretreatment of the non-metallic additives
- C22C1/1015—Pretreatment of the non-metallic additives by preparing or treating a non-metallic additive preform
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C1/00—Making alloys
- C22C1/02—Making alloys by melting
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides whether added as such or formed in situ
- C22C32/0084—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides whether added as such or formed in situ carbon or graphite as the main non-metallic constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C32/00—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides whether added as such or formed in situ
- C22C32/001—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides whether added as such or formed in situ with only oxides
- C22C32/0015—Non-ferrous alloys containing at least 5% by weight but less than 50% by weight of oxides, carbides, borides, nitrides, silicides or other metal compounds, e.g. oxynitrides, sulfides whether added as such or formed in situ with only oxides with only single oxides as main non-metallic constituents
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C21/00—Alloys based on aluminium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C23/00—Alloys based on magnesium
- C22C23/02—Alloys based on magnesium with aluminium as the next major constituent
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C14/00—Alloys based on titanium
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/52—Constituents or additives characterised by their shapes
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
- B22F2998/00—Supplementary information concerning processes or compositions relating to powder metallurgy
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D19/00—Casting in, on, or around objects which form part of the product
- B22D19/14—Casting in, on, or around objects which form part of the product the objects being filamentary or particulate in form
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
- B22F9/00—Making metallic powder or suspensions thereof
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER
- B22F1/00—Special treatment of metallic powder, e.g. to facilitate working, to improve properties; Metallic powders per se, e.g. mixtures of particles of different composition
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D21/00—Casting non-ferrous metals or metallic compounds so far as their metallurgical properties are of importance for the casting procedure; selection of compositions therefor
- B22D21/002—Castings of light metals
- B22D21/007—Castings of light metals with low melting point, e.g. Al 659 degrees C, Mg 650 degrees C
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tosun et al. | The porosity, microstructure, and hardness of Al-Mg composites reinforced with micro particle SiC/Al2O3 produced using powder metallurgy | |
Kumar et al. | Microstructure, mechanical response and fractography of AZ91E/Al2O3 (p) nano composite fabricated by semi solid stir casting method | |
Bhandare et al. | Preparation of aluminium matrix composite by using stir casting method | |
Kalaiselvan et al. | Production and characterization of AA6061–B4C stir cast composite | |
Selvam et al. | Synthesis and characterization of Al6061-Fly Ashp-SiCp composites by stir casting and compocasting methods | |
Prabhu et al. | Microstructure and mechanical properties of rutile-reinforced AA6061 matrix composites produced via stir casting process | |
Saheb | Aluminum silicon carbide and aluminum graphite particulate composites | |
Shorowordi et al. | Microstructure and interface characteristics of B4C, SiC and Al2O3 reinforced Al matrix composites: a comparative study | |
KR101242529B1 (en) | Method of Interface Hardening of Carbon Material Using Nano Silicon Carbarde Coating | |
Almadhoni et al. | Review of effective parameters of stir casting process on metallurgical properties of ceramics particulate Al composites | |
Mazahery et al. | Mechanical properties of A356 matrix composites reinforced with nano-SiC particles | |
Khademian et al. | Fabrication and characterization of hot rolled and hot extruded boron carbide (B 4 C) reinforced A356 aluminum alloy matrix composites produced by stir casting method | |
CN110423915B (en) | Preparation method of aluminum-based composite material | |
Sakthivelu et al. | Synthesis of Metal Matrix Composites through Stir Casting Process--a Review. | |
CN110438379B (en) | Preparation method of lithium-containing magnesium/aluminum-based composite material | |
Gui M.-C. et al. | Microstructure and mechanical properties of cast (Al–Si)/SiCp composites produced by liquid and semisolid double stirring process | |
Manivannan et al. | Fabrication and characterization of aluminium boron nitride composite for fins | |
Hoseini et al. | Fabrication of in situ aluminum–alumina composite with glass powder | |
Singh et al. | An overview of metal matrix composite: processing and SiC based mechanical properties | |
Mazahery et al. | The performance of pressure assisted casting process to improve the mechanical properties of Al-Si-Mg alloys matrix reinforced with coated B 4 C particles | |
Akira et al. | Mechanical and tribological properties of nano-sized Al2O3 particles on ADC12 alloy composites with Strontium modifier produced by stir casting method | |
Dash et al. | Studies on synthesis of magnesium based metal matrix composites (MMCs) | |
Moghadam et al. | In-situ reactions in hybrid aluminum alloy composites during incorporating silica sand in aluminum alloy melts. | |
Almadhoni et al. | Particle Size Dependence of MnO Reduction for Fabrication of Composite vir Stir Casting | |
Almadhoni et al. | Particle Size Dependence of MnO Reduction for Fabrication of 𝐀𝐥− 𝐀𝐥𝐌𝐧𝐎𝐗 Composite vir Stir Casting |