Takahashi et al., 2015 - Google Patents
Compact 100-Gb/s DP-QPSK intradyne coherent receiver module employing Si waveguideTakahashi et al., 2015
- Document ID
- 13553213746904319808
- Author
- Takahashi M
- Matsumoto T
- Watanabe S
- Shiba K
- Kaneko T
- Oguro M
- Chikuma T
- Kitamura N
- Yamazaki H
- Publication year
- Publication venue
- 2015 European Conference on Optical Communication (ECOC)
External Links
Snippet
Compact 100-Gb/s DP-QPSK intradyne coherent receiver module employing Si waveguide
Page 1 Compact 100-Gb/s DP-QPSK Intradyne Coherent Receiver Module Employing Si
Waveguide Morio Takahashi, Takashi Matsumoto, Shinya Watanabe, Kazuhiro Shiba, Taro …
- 230000001427 coherent 0 title description 6
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29346—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means operating by wave or beam interference
- G02B6/2935—Mach-Zehnder configuration, i.e. comprising separate splitting and combining means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
- G02B6/125—Bends, branchings or intersections
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/122—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths
- G02B6/1221—Light guides of the optical waveguide type of the integrated circuit kind basic optical elements, e.g. light-guiding paths made from organic materials
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/2804—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals forming multipart couplers without wavelength selective elements, e.g. "T" couplers, star couplers
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12083—Constructional arrangements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12133—Functions
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B2006/12166—Manufacturing methods
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/10—Light guides of the optical waveguide type
- G02B6/12—Light guides of the optical waveguide type of the integrated circuit kind
- G02B6/13—Integrated optical circuits characterised by the manufacturing method
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS, OR APPARATUS
- G02B6/00—Light guides
- G02B6/24—Coupling light guides
- G02B6/42—Coupling light guides with opto-electronic elements
- G02B6/4201—Packages, e.g. shape, construction, internal or external details
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/60—Receivers
- H04B10/66—Non-coherent receivers, e.g. using direct detection
- H04B10/67—Optical arrangements in the receiver
- H04B10/676—Optical arrangements in the receiver for all-optical demodulation of the input optical signal
-
- G—PHYSICS
- G02—OPTICS
- G02F—DEVICES OR ARRANGEMENTS, THE OPTICAL OPERATION OF WHICH IS MODIFIED BY CHANGING THE OPTICAL PROPERTIES OF THE MEDIUM OF THE DEVICES OR ARRANGEMENTS FOR THE CONTROL OF THE INTENSITY, COLOUR, PHASE, POLARISATION OR DIRECTION OF LIGHT, e.g. SWITCHING, GATING, MODULATING OR DEMODULATING; TECHNIQUES OR PROCEDURES FOR THE OPERATION THEREOF; FREQUENCY-CHANGING; NON-LINEAR OPTICS; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/0136—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating, or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour for the control of polarisation, e.g. state of polarisation [SOP] control, polarisation scrambling, TE-TM mode conversion or separation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/25—Arrangements specific to fibre transmission
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04B—TRANSMISSION
- H04B10/00—Transmission systems employing electromagnetic waves other than radio-waves, e.g. infrared, visible or ultraviolet light, or employing corpuscular radiation, e.g. quantum communication
- H04B10/11—Arrangements specific to free-space transmission, i.e. transmission through air or vacuum
- H04B10/112—Line-of-sight transmission over an extended range
- H04B10/1121—One-way transmission
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Doerr | Silicon photonic integration in telecommunications | |
Sakaguchi et al. | 305 Tb/s space division multiplexed transmission using homogeneous 19-core fiber | |
Chen et al. | Monolithically integrated 40-wavelength demultiplexer and photodetector array on silicon | |
Jeong et al. | Novel Optical 90$^{\circ} $ Hybrid Consisting of a Paired Interference Based 2$\,\times\, $4 MMI Coupler, a Phase Shifter and a 2$\,\times\, $2 MMI Coupler | |
US20160103281A1 (en) | Polarization beam splitter and optical device | |
Goi et al. | DQPSK/QPSK modulation at 40-60 Gb/s using low-loss nested silicon Mach-Zehnder modulator | |
Goi et al. | 128-Gb/s DP-QPSK using low-loss monolithic silicon IQ modulator integrated with partial-rib polarization rotator | |
Faralli et al. | A compact silicon coherent receiver without waveguide crossing | |
Doi et al. | Compact ROSA for 100-Gb/s (4× 25 Gb/s) Ethernet with a PLC-based AWG demultiplexer | |
Runge et al. | Monolithic InP receiver chip with a variable optical attenuator for colorless WDM detection | |
Fujisawa et al. | Low-loss and small 2× 4λ multiplexers based on 2× 2 and 2× 1 Mach–Zehnder interferometers with on-chip polarization multiplexing for 400GbE | |
Li et al. | A 10-Gb/s silicon microring resonator-based BPSK link | |
Kurata et al. | Heterogeneous integration of high-speed InP PDs on silica-based planar lightwave circuit platform | |
Takahashi et al. | Compact 100-Gb/s DP-QPSK intradyne coherent receiver module employing Si waveguide | |
Kraemer et al. | S-, C-and L-Band photonic integrated wavelength selective switch | |
Inoue et al. | InP-based photodetector monolithically integrated with 90 hybrid for 100 Gbit/s compact coherent receivers | |
Tanizawa et al. | 4× 4 Si-wire optical path switch with off-chip polarization diversity | |
Itoh et al. | Heterogeneous integration of InP PDs on silica-based PLCs | |
Nielsen et al. | Engineering silicon photonics solutions for metro DWDM | |
de Farias et al. | Photonic integrated devices for high-capacity data-center interconnect | |
Nasu et al. | Asymmetric half-wave plate configuration of PLC Mach–Zehnder interferometer for polarization insensitive DQPSK demodulator | |
Chen | Silicon photonic integrated circuits for WDM technology and optical switch | |
van der Tol et al. | Photonic integration on an InP-membrane | |
Uemura et al. | Low-Optical-Return Multimode Interference Photodiodes with Small Capacitance for Polarization-Diverse Optical Receivers | |
Kou et al. | Silicon/Silica-Hybrid-Integrated Delay Line Interferometer for Demodulation of PSK Formats |