Walker et al., 2021 - Google Patents
Predicting grapevine canopy nitrogen status using proximal sensors and near‐infrared reflectance spectroscopyWalker et al., 2021
- Document ID
- 13395764257560827199
- Author
- Walker H
- Jones J
- Swarts N
- Rodemann T
- Kerslake F
- Dambergs R
- Publication year
- Publication venue
- Journal of plant nutrition and soil science
External Links
Snippet
Background: The current method employed by industry for tissue analysis to determine grapevine nitrogen (N) status is expensive and time intensive. Aims: This study explored the use of proximal sensors and Fourier transform near infrared spectroscopy (FT‐NIRS) to …
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen   N#N 0 title abstract description 32
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
- G01N21/359—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light using near infra-red light
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
- G01N21/3577—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light for analysing liquids, e.g. polluted water
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/35—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light
- G01N21/3563—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using infra-red light for analysing solids; Preparation of samples therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/31—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
- G01N21/314—Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry with comparison of measurements at specific and non-specific wavelengths
- G01N2021/3155—Measuring in two spectral ranges, e.g. UV and visible
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/62—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
- G01N21/63—Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
- G01N21/65—Raman scattering
- G01N2021/653—Coherent methods [CARS]
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/84—Systems specially adapted for particular applications
- G01N21/85—Investigating moving fluids or granular solids
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/28—Investigating the spectrum
- G01J3/42—Absorption spectrometry; Double beam spectrometry; Flicker spectrometry; Reflection spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J3/00—Spectrometry; Spectrophotometry; Monochromators; Measuring colour
- G01J3/28—Investigating the spectrum
- G01J3/44—Raman spectrometry; Scattering spectrometry; Fluorescence spectrometry
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
- G01N33/02—Investigating or analysing materials by specific methods not covered by the preceding groups food
- G01N33/14—Investigating or analysing materials by specific methods not covered by the preceding groups food beverages
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Chandrasekaran et al. | Potential of near-infrared (NIR) spectroscopy and hyperspectral imaging for quality and safety assessment of fruits: An overview | |
Zhang et al. | Rapid determination of leaf water content using VIS/NIR spectroscopy analysis with wavelength selection | |
Barnaba et al. | Portable NIR‐AOTF spectroscopy combined with winery FTIR spectroscopy for an easy, rapid, in‐field monitoring of Sangiovese grape quality | |
Walker et al. | Predicting grapevine canopy nitrogen status using proximal sensors and near‐infrared reflectance spectroscopy | |
Pérez-Marín et al. | Postharvest shelf-life discrimination of nectarines produced under different irrigation strategies using NIR-spectroscopy | |
Daniels et al. | Measuring internal maturity parameters contactless on intact table grape bunches using NIR spectroscopy | |
Prananto et al. | Rapid and cost-effective nutrient content analysis of cotton leaves using near-infrared spectroscopy (NIRS) | |
US20230078617A1 (en) | A method for assessing nitrogen nutritional status in plants by visible-to-shortwave infrared reflectance spectroscopy of carbohydrates | |
Kruse et al. | Remote sensing of nitrogen stress in creeping bentgrass | |
Friedel et al. | Performance of reflectance indices and of a handheld device for estimating in‐field the nitrogen status of grapevine leaves | |
Ferrara et al. | The prediction of ripening parameters in Primitivo wine grape cultivar using a portable NIR device | |
Ferrara et al. | Ripeness prediction in table grape cultivars by using a portable NIR device | |
Nawi et al. | Visible and shortwave near infrared spectroscopy for predicting sugar content of sugarcane based on a cross-sectional scanning method | |
Marañón et al. | NIR attribute selection for the development of vineyard water status predictive models | |
Jie et al. | Determination of Nitrogen Concentration in Fresh Pear Leaves by Visible/Near‐Infrared Reflectance Spectroscopy | |
Jianfeng et al. | Non-destructive measurement of chlorophyll in tomato leaves using spectral transmittance | |
Smith et al. | Measurement of the concentration of nutrients in grapevine petioles by attenuated total reflectance F ourier transform infrared spectroscopy and chemometrics | |
Feng et al. | Monitoring leaf pigment status with hyperspectral remote sensing in wheat | |
Páscoa | In situ visible and near-infrared spectroscopy applied to vineyards as a tool for precision viticulture | |
Abeytilakarathna et al. | Relationship between total solid content and red, green and blue colour intensity of strawberry (Fragaria x ananassa Duch.) fruits | |
Shah et al. | NIR spectroscopy: Technology ready for food industries applications | |
Sun et al. | From lab to orchard use for models of hand-held NIRS instrument: A case for navel orange quality assessment considering ambient light correction | |
Jones et al. | Prediction of starch reserves in intact and ground grapevine cane wood tissues using near‐infrared reflectance spectroscopy | |
Walker et al. | Developing a rapid assessment technique to determine grapevine canopy nitrogen status | |
CN102435553A (en) | Method for utilizing spectral indexes to monitor protein content of wheat grains |