Nothing Special   »   [go: up one dir, main page]

Zhou et al., 2022 - Google Patents

Design and analysis of a compact solar concentrator tracking via the refraction of the rotating prism

Zhou et al., 2022

Document ID
13346340743429516734
Author
Zhou R
Wang R
Xing C
Sun J
Guo Y
Li W
Qu W
Hong H
Zhao C
Publication year
Publication venue
Energy

External Links

Snippet

The area for the solar energy utilization in the building is limited. With this in mind, a compact solar collector which integrated the prism and semi-parabolic trough mirror is proposed for the efficiently solar energy collecting in limited space. The prism is rotated to track the sun …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/04Solar heat collectors having working fluid conveyed through collector
    • F24J2/06Solar heat collectors having working fluid conveyed through collector having concentrating elements
    • F24J2/10Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements
    • F24J2/14Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements semi-cylindrical or cylindro-parabolic
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy
    • Y02E10/47Mountings or tracking
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/04Solar heat collectors having working fluid conveyed through collector
    • F24J2/06Solar heat collectors having working fluid conveyed through collector having concentrating elements
    • F24J2/10Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements
    • F24J2/18Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements spaced, opposed interacting reflecting surfaces
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy
    • Y02E10/43Fresnel lenses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/04Solar heat collectors having working fluid conveyed through collector
    • F24J2/06Solar heat collectors having working fluid conveyed through collector having concentrating elements
    • F24J2/10Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements
    • F24J2/16Solar heat collectors having working fluid conveyed through collector having concentrating elements having reflectors as concentrating elements having flat plates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/04Solar heat collectors having working fluid conveyed through collector
    • F24J2/06Solar heat collectors having working fluid conveyed through collector having concentrating elements
    • F24J2/08Solar heat collectors having working fluid conveyed through collector having concentrating elements having lenses as concentrating elements
    • F24J2/085Solar heat collectors having working fluid conveyed through collector having concentrating elements having lenses as concentrating elements having discontinuous faces, e.g. Fresnel lenses
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy
    • Y02E10/44Heat exchange systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/46Component parts, details or accessories of solar heat collectors
    • F24J2/52Arrangement of mountings or supports
    • F24J2/54Arrangement of mountings or supports specially adapted for rotary movement
    • F24J2/5403Arrangement of mountings or supports specially adapted for rotary movement with only one rotation axis
    • F24J2/541Arrangement of mountings or supports specially adapted for rotary movement with only one rotation axis with horizontal axis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GASES [GHG] EMISSION, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/60Thermal-PV hybrids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING ENGINES OR PUMPS
    • F24HEATING; RANGES; VENTILATING
    • F24JPRODUCING OR USE OF HEAT NOT OTHERWISE PROVIDED FOR
    • F24J2/00Use of solar heat, e.g. solar heat collectors
    • F24J2/38Use of solar heat, e.g. solar heat collectors employing tracking means

Similar Documents

Publication Publication Date Title
Xie et al. Concentrated solar energy applications using Fresnel lenses: A review
Chemisana et al. Building integration of concentrating systems for solar cooling applications
Vant-Hull Central tower concentrating solar power (CSP) systems
Zheng et al. Design and experimental analysis of a cylindrical compound Fresnel solar concentrator
Sansoni et al. Optical collection efficiency and orientation of a solar trough medium-power plant installed in Italy
Shanks et al. Theoretical investigation considering manufacturing errors of a high concentrating photovoltaic of cassegrain design and its experimental validation
Saini et al. Solar thermal receivers—a review
Tsai Optimized solar thermal concentrator system based on free-form trough reflector
Beltagy A secondary reflector geometry optimization of a Fresnel type solar concentrator
Liang et al. Design and test of an annular fresnel solar concentrator to obtain a high-concentration solar energy flux
Yan et al. Study on the optical performance of novel dish solar concentrator formed by rotating array of plane mirrors with the same size
Chen et al. Numerical simulation on the optical and thermal performance of a modified integrated compound parabolic solar concentrator
Shanks et al. High-concentration optics for photovoltaic applications
Zhou et al. Design and analysis of a compact solar concentrator tracking via the refraction of the rotating prism
Xuan et al. Performance evaluation for the dielectric asymmetric compound parabolic concentrator with almost unity angular acceptance efficiency
Paul Theoretical and experimental optical evaluation and comparison of symmetric 2D CPC and V‐trough collector for photovoltaic applications
López-Alvarez et al. Impact of the variation of the receiver glass envelope transmittance as a function of the incidence angle in the performance of a linear Fresnel collector
Panagopoulos et al. Optical and thermal performance simulation of a micro-mirror solar collector
Ullah Optical modeling of two-stage concentrator photovoltaic system using parabolic trough
Strebkov et al. Solar concentrator modules for residential power supply
Renno Characterization of spherical optics performance compared to other types of optical systems in a point-focus CPV system
Zheng et al. A new optical concentrator design and analysis for rooftop solar applications
Vance et al. Computational study of a fixed orientation photovoltaic compound parabolic concentrator
Vant-Hull Concentrator optics
Sangster et al. Concentrated solar power