Nothing Special   »   [go: up one dir, main page]

Benassi et al., 2013 - Google Patents

Petroleum crude oil analysis using low‐temperature plasma mass spectrometry

Benassi et al., 2013

View PDF
Document ID
13260999438340749152
Author
Benassi M
Berisha A
Romão W
Babayev E
Römpp A
Spengler B
Publication year
Publication venue
Rapid Communications in Mass Spectrometry

External Links

Snippet

RATIONALE The analysis of crude oil is a challenging task due to sample complexity. In mass spectrometry, several ionization techniques can be used to perform this task. Herein, we report the use of an atmospheric pressure low‐temperature plasma (LTP) probe to …
Continue reading at www.researchgate.net (PDF) (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/62Detectors specially adapted therefor
    • G01N30/72Mass spectrometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/26Conditioning of the fluid carrier; Flow patterns
    • G01N30/38Flow patterns
    • G01N30/46Flow patterns using more than one column
    • G01N30/461Flow patterns using more than one column with serial coupling of separation columns
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/161Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission using photoionisation, e.g. by laser
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/02Details
    • H01J49/04Arrangements for introducing or extracting samples to be analysed, e.g. vacuum locks; Arrangements for external adjustment of electron- or ion-optical components
    • H01J49/0409Sample holders or containers
    • H01J49/0413Sample holders or containers for automated handling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/86Signal analysis
    • G01N30/8665Signal analysis for calibrating the measuring apparatus
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/107Arrangements for using several ion sources
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/02Details
    • H01J49/10Ion sources; Ion guns
    • H01J49/16Ion sources; Ion guns using surface ionisation, e.g. field-, thermionic- or photo-emission
    • H01J49/165Electrospray ionisation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/04Preparation or injection of sample to be analysed
    • G01N30/06Preparation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means
    • G01N27/62Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode
    • G01N27/622Investigating or analysing materials by the use of electric, electro-chemical, or magnetic means by investigating the ionisation of gases; by investigating electric discharges, e.g. emission of cathode separating and identifying ionized molecules based on their mobility in a carrier gas, i.e. ion mobility spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/90Plate chromatography, e.g. thin layer or paper chromatography
    • G01N30/94Development
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by the preceding groups
    • G01N33/26Investigating or analysing materials by specific methods not covered by the preceding groups oils; viscous liquids; paints; inks
    • G01N33/28Oils, i.e. hydrocarbon liquids
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/26Mass spectrometers or separator tubes
    • H01J49/34Dynamic spectrometers
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/0027Methods for using particle spectrometers
    • H01J49/0036Step by step routines describing the handling of the data generated during a measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/71Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light thermally excited
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J49/00Particle spectrometer or separator tubes
    • H01J49/004Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn
    • H01J49/0045Combinations of spectrometers, tandem spectrometers, e.g. MS/MS, MSn characterised by the fragmentation or other specific reaction

Similar Documents

Publication Publication Date Title
Benassi et al. Petroleum crude oil analysis using low‐temperature plasma mass spectrometry
Hsu et al. Petroleomics: advanced molecular probe for petroleum heavy ends
Smoluch et al. Plasma‐based ambient ionization mass spectrometry in bioanalytical sciences
Correa et al. Forensic chemistry and ambient mass spectrometry: a perfect couple destined for a happy marriage?
Zhan et al. Microwave-induced plasma desorption/ionization source for ambient mass spectrometry
Kondyli et al. High‐resolution GC/MS studies of a light crude oil fraction
Wu et al. Application of atmospheric pressure ionization techniques and tandem mass spectrometry for the characterization of petroleum components
Shah et al. Enhanced data‐independent analysis of lipids using ion mobility‐TOFMSE to unravel quantitative and qualitative information in human plasma
Marshall et al. Mass resolution and mass accuracy: how much is enough?
García‐Reyes et al. Direct olive oil analysis by low‐temperature plasma (LTP) ambient ionization mass spectrometry
Zhang et al. Direct desorption/ionization of analytes by microwave plasma torch for ambient mass spectrometric analysis
Getty et al. Compact two‐step laser time‐of‐flight mass spectrometer for in situ analyses of aromatic organics on planetary missions
Nyadong et al. Atmospheric pressure laser-induced acoustic desorption chemical ionization mass spectrometry for analysis of saturated hydrocarbons
Tranchida et al. Current state of comprehensive two-dimensional gas chromatography-mass spectrometry with focus on processes of ionization
Benigni et al. Increasing polyaromatic hydrocarbon (PAH) molecular coverage during fossil oil analysis by combining gas chromatography and atmospheric-pressure laser ionization fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS)
Lababidi et al. Online normal‐phase high‐performance liquid chromatography/Fourier transform ion cyclotron resonance mass spectrometry: Effects of different ionization methods on the characterization of highly complex crude oil mixtures
Kim et al. Combination of ring type HPLC separation, ultrahigh-resolution mass spectrometry, and high field NMR for comprehensive characterization of crude oil compositions
Pilolli et al. Orbitrap™ monostage MS versus hybrid linear ion trap MS: application to multi‐allergen screening in wine
Barrère et al. Rapid analysis of lubricants by atmospheric solid analysis probe–ion mobility mass spectrometry
Kim et al. Automated electrospray ionization FT-ICR mass spectrometry for petroleum analysis
Yerabolu et al. Molecular profiling of crude oil by using Distillation Precipitation Fractionation Mass Spectrometry (DPF-MS)
Guo et al. Hyphenated techniques in gas chromatography
Otto et al. Application of pyrolysis–mass spectrometry and pyrolysis–gas chromatography–mass spectrometry with electron-ionization or resonance-enhanced-multi-photon ionization for characterization of crude oils
Roussis et al. Quantitative determination of polar and ionic compounds in petroleum fractions by atmospheric pressure chemical ionization and electrospray ionization mass spectrometry
Patel et al. Mass spectrometry-A review