Huang et al., 2023 - Google Patents
A novel priority dispatch rule generation method based on graph neural network and reinforcement learning for distributed job-shop schedulingHuang et al., 2023
- Document ID
- 1315173981877385314
- Author
- Huang J
- Gao L
- Li X
- Zhang C
- Publication year
- Publication venue
- Journal of Manufacturing Systems
External Links
Snippet
With the development of a global economy, distributed manufacturing becomes common in the industrial field. The Distributed Job-shop Scheduling Problem (DJSP), which is widespread in real-life production, is a hotspot in the academic field. The existing Priority …
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/06—Resources, workflows, human or project management, e.g. organising, planning, scheduling or allocating time, human or machine resources; Enterprise planning; Organisational models
- G06Q10/063—Operations research or analysis
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM]
- G05B19/41865—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS], computer integrated manufacturing [CIM] characterised by job scheduling, process planning, material flow
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q10/00—Administration; Management
- G06Q10/04—Forecasting or optimisation, e.g. linear programming, "travelling salesman problem" or "cutting stock problem"
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/04—Inference methods or devices
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N5/00—Computer systems utilising knowledge based models
- G06N5/02—Knowledge representation
- G06N5/022—Knowledge engineering, knowledge acquisition
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/32—Operator till task planning
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F9/00—Arrangements for programme control, e.g. control unit
- G06F9/06—Arrangements for programme control, e.g. control unit using stored programme, i.e. using internal store of processing equipment to receive and retain programme
- G06F9/46—Multiprogramming arrangements
- G06F9/48—Programme initiating; Programme switching, e.g. by interrupt
- G06F9/4806—Task transfer initiation or dispatching
- G06F9/4843—Task transfer initiation or dispatching by program, e.g. task dispatcher, supervisor, operating system
- G06F9/4881—Scheduling strategies for dispatcher, e.g. round robin, multi-level priority queues
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/027—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/50—Computer-aided design
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06Q—DATA PROCESSING SYSTEMS OR METHODS, SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL, SUPERVISORY OR FORECASTING PURPOSES, NOT OTHERWISE PROVIDED FOR
- G06Q30/00—Commerce, e.g. shopping or e-commerce
- G06Q30/02—Marketing, e.g. market research and analysis, surveying, promotions, advertising, buyer profiling, customer management or rewards; Price estimation or determination
- G06Q30/0202—Market predictions or demand forecasting
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B15/00—Systems controlled by a computer
- G05B15/02—Systems controlled by a computer electric
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Park et al. | Learning to schedule job-shop problems: representation and policy learning using graph neural network and reinforcement learning | |
Zhou et al. | Multi-agent reinforcement learning for online scheduling in smart factories | |
Huang et al. | A novel priority dispatch rule generation method based on graph neural network and reinforcement learning for distributed job-shop scheduling | |
Gui et al. | Dynamic scheduling for flexible job shop using a deep reinforcement learning approach | |
Reddy et al. | An effective hybrid multi objective evolutionary algorithm for solving real time event in flexible job shop scheduling problem | |
Li et al. | A hybrid Pareto-based tabu search for the distributed flexible job shop scheduling problem with E/T criteria | |
Chaouch et al. | A novel dynamic assignment rule for the distributed job shop scheduling problem using a hybrid ant-based algorithm | |
Ebrahimi et al. | Hybrid flow shop scheduling with sequence dependent family setup time and uncertain due dates | |
Erol et al. | A multi-agent based approach to dynamic scheduling of machines and automated guided vehicles in manufacturing systems | |
Li et al. | Survey of integrated flexible job shop scheduling problems | |
Lee et al. | Deep reinforcement learning based scheduling within production plan in semiconductor fabrication | |
Kardos et al. | Dynamic scheduling in a job-shop production system with reinforcement learning | |
Zhang et al. | Distributed real-time scheduling in cloud manufacturing by deep reinforcement learning | |
Zeng et al. | Scheduling of no buffer job shop cells with blocking constraints and automated guided vehicles | |
Niu et al. | Swarm intelligence algorithms for yard truck scheduling and storage allocation problems | |
Elmi et al. | Cyclic job shop robotic cell scheduling problem: Ant colony optimization | |
Fang et al. | Flexible worker allocation in aircraft final assembly line using multiobjective evolutionary algorithms | |
Xiong et al. | Multi-agent deep reinforcement learning for task offloading in group distributed manufacturing systems | |
Panzer et al. | Deep reinforcement learning in production planning and control: a systematic literature review | |
Ripon et al. | Integrated job shop scheduling and layout planning: A hybrid evolutionary method for optimizing multiple objectives | |
Abd et al. | Simulation modelling and analysis of scheduling in robotic flexible assembly cells using Taguchi method | |
Cheng et al. | Learning-based metaheuristic for scheduling unrelated parallel machines with uncertain setup times | |
Huang et al. | An end-to-end deep reinforcement learning method based on graph neural network for distributed job-shop scheduling problem | |
Liu et al. | A new knowledge-guided multi-objective optimisation for the multi-AGV dispatching problem in dynamic production environments | |
Ding et al. | A survey of ai-enabled dynamic manufacturing scheduling: From directed heuristics to autonomous learning |