Nothing Special   »   [go: up one dir, main page]

Kirkman et al., 2016 - Google Patents

Design Study for a Highly Fuel Efficient Regional Transport

Kirkman et al., 2016

View PDF
Document ID
12757362817317418616
Author
Kirkman J
Wood D
Knight T
Gurczak M
Rothlsiberger C
Pan K
Takahashi T
Publication year
Publication venue
54th AIAA Aerospace Sciences Meeting

External Links

Snippet

The fuel efficiency of commercial aircraft has improved over the years, but fuel cost is still by far the biggest expense for any airline. It is possible to offset these costs by filling more seats on each flight or by replacing older aircraft with newer, more fuel-efficient planes. Higher fuel …
Continue reading at labs.engineering.asu.edu (PDF) (other versions)

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLYING SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plant in aircraft; Aircraft characterised thereby
    • B64D27/02Aircraft characterised by the type or position of power plant
    • B64D27/16Aircraft characterised by the type or position of power plant of jet type
    • B64D27/18Aircraft characterised by the type or position of power plant of jet type within or attached to wing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C29/00Aircraft capable of landing or taking-off vertically
    • B64C29/0008Aircraft capable of landing or taking-off vertically having its flight directional axis horizontal when grounded
    • B64C29/0016Aircraft capable of landing or taking-off vertically having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
    • B64C29/0025Aircraft capable of landing or taking-off vertically having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being fixed relative to the fuselage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies
    • Y02T50/67Relevant aircraft propulsion technologies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/04Aircraft not otherwise provided for having multiple fuselages or tail booms
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/10All-wing aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C3/00Wings
    • B64C3/10Shape of wings
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C1/00Fuselages; Constructional features common to fuselages, wings, stabilising surfaces and the like
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • Y02T50/14Adaptive structures
    • Y02T50/145Morphing wings or smart wings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/10Drag reduction
    • Y02T50/12Overall configuration, shape or profile of fuselage or wings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/40Weight reduction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64FGROUND OR AIRCRAFT-CARRIER-DECK INSTALLATIONS SPECIALLY ADAPTED FOR USE IN CONNECTION WITH AIRCRAFT; DESIGNING, MANUFACTURING, ASSEMBLING, CLEANING, MAINTAINING OR REPAIRING AIRCRAFT, NOT OTHERWISE PROVIDED FOR; HANDLING, TRANSPORTING, TESTING OR INSPECTING AIRCRAFT COMPONENTS, NOT OTHERWISE PROVIDED FOR
    • B64F5/00Designing, manufacturing, assembling, cleaning, maintaining or repairing aircraft, not otherwise provided for; Handling, transporting, testing or inspecting aircraft components, not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C9/00Adjustable control surfaces or members, e.g. rudders
    • B64C9/34Adjustable control surfaces or members, e.g. rudders collapsing or retracting against or within other surfaces or other members
    • B64C9/36Adjustable control surfaces or members, e.g. rudders collapsing or retracting against or within other surfaces or other members the members being fuselages or nacelles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLYING SUITS; PARACHUTES; ARRANGEMENTS OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D33/00Arrangements in aircraft of power plant parts or auxiliaries not otherwise provided for
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C2700/00Codes corresponding to the former IdT classification
    • B64C2700/62Codes corresponding to the former IdT classification of class 62
    • B64C2700/6201Airplanes, helicopters, autogyros

Similar Documents

Publication Publication Date Title
Okonkwo et al. Review of evolving trends in blended wing body aircraft design
Bonet et al. Environmentally responsible aviation (ERA) project-n+ 2 advanced vehicle concepts study and conceptual design of subscale test vehicle (STV) final report
Nickol Hybrid wing body configuration scaling study
Raymer et al. Advanced technology subsonic transport study: N+ 3 technologies and design concepts
Feldstein et al. Preliminary Design of Coplanar Joined Wing Aircraft with Integrated Active Flow Control
Kirkman et al. Design Study for a Highly Fuel Efficient Regional Transport
Mattos et al. An airplane calculator featuring a high-fidelity methodology for tailplane sizing
Badis Subsonic aircraft wing conceptual design synthesis and analysis
Mathieu et al. Preliminary Design of an N+ 1 Overwater Supersonic Commerical Transport Aircraft
Patel Design of medium size blended wing body subsonic transport aircraft
Gologan A method for the comparison of transport aircraft with blown flaps
Mora et al. Conceptual Design of a N+ 1 Transonic Executive Jet
Frost et al. Preliminary Design of a Trans-Atlantic High Speed Civil Transport
Trac-Pho Conceptual Design of a Blended Wing Body Airliner
Milosavljevic et al. Preliminary Design of a Long Range, Fuel Efficient High Performance Business Jet
Mason Modern aircraft design techniques
Vasconcelos et al. Multidisciplinary Optimization of a Next-Generation Narrow Body Transport
JOSEPH DESIGN OF CARGO AIRCRAFT AEB336 DESIGN PROJECT-1 REPORT
KARTHIK DESIGN OF CARGO AIRCRAFT AEB336 DESIGN PROJECT-1 REPORT
BHARDWAJ DESIGN OF CARGO AIRCRAFT AEB336 DESIGN PROJECT-1 REPORT
Tekin et al. V-Tailed Transatlantic Business Jet
Pergamalis Conceptual design, flying and handling qualities of a supersonic transport aircraft.
Langley et al. Conceptual Design of a Mach 0.95 Cruise N+ 1 Commercial Transport
Wang Preliminary design of the mid-range passenger plane with a capacity of 106 passengers
Delisle et al. Preliminary Design of a Next Generation Super-Mid-Size Business Jet