Nothing Special   »   [go: up one dir, main page]

Wong et al., 2015 - Google Patents

IFA-based metal-frame antenna without ground clearance for the LTE/WWAN operation in the metal-casing tablet computer

Wong et al., 2015

Document ID
1275210258244797220
Author
Wong K
Tsai C
Publication year
Publication venue
IEEE Transactions on Antennas and Propagation

External Links

Snippet

A metal-frame antenna for the long-term evolution/wireless wide area network (LTE/WWAN) operation in the metal-casing tablet computer is presented. The antenna is formed by using two inverted-F antenna (IFA) structures to provide a low band and a high band to …
Continue reading at ieeexplore.ieee.org (other versions)

Classifications

    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/16Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
    • H01Q9/26Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole with folded element or elements, the folded parts being spaced apart a small fraction of operating wavelength
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0421Substantially flat resonant element parallel to ground plane, e.g. patch antenna with a shorting wall or a shorting pin at one end of the element
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/30Resonant aerials with feed to end of elongated active element, e.g. unipole
    • H01Q9/40Element having extended radiating surface
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/30Resonant aerials with feed to end of elongated active element, e.g. unipole
    • H01Q9/42Resonant aerials with feed to end of elongated active element, e.g. unipole with folded element, the folded parts being spaced apart a small fraction of the operating wavelength
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0442Substantially flat resonant element parallel to ground plane, e.g. patch antenna with particular tuning means
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q9/00Electrically-short aerials having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant aerials
    • H01Q9/16Resonant aerials with feed intermediate between the extremities of the aerial, e.g. centre-fed dipole
    • H01Q9/28Conical, cylindrical, cage, strip, gauze, or like elements having an extended radiating surface; Elements comprising two conical surfaces having collinear axes and adjacent apices and fed by two-conductor transmission lines
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q13/00Waveguide horns or mouths; Slot aerials; Leaky-waveguide aerials; Equivalent structures causing radiation along the transmission path of a guided wave
    • H01Q13/10Resonant slot aerials
    • H01Q13/18Resonant slot aerials the slot being backed by, or formed in boundary wall of, a resonant cavity ; Open cavity antennas
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting aerial units or systems
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/52Means for reducing coupling between aerials; Means for reducing coupling between an aerial and another structure
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q1/00Details of, or arrangements associated with, aerials
    • H01Q1/44Details of, or arrangements associated with, aerials using equipment having another main function to serve additionally as an aerial; Means for giving an aerial anaesthetic aspect
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q21/00Aerial arrays or systems
    • H01Q21/30Combinations of separate aerial units operating in different wavebands and connected to a common feeder system
    • HELECTRICITY
    • H01BASIC ELECTRIC ELEMENTS
    • H01QAERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction, or polarisation of waves radiated from an aerial, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices

Similar Documents

Publication Publication Date Title
Wong et al. IFA-based metal-frame antenna without ground clearance for the LTE/WWAN operation in the metal-casing tablet computer
Barani et al. Integrated Inverted-F and Open-Slot Antennas in the Metal-Framed Smartphone for $2\times2 $ LTE LB and $4\times4 $ LTE M/HB MIMO Operations
Choi et al. Four-element reconfigurable coupled loop MIMO antenna featuring LTE full-band operation for metallic-rimmed smartphone
Xu et al. Multimode decoupling technique with independent tuning characteristic for mobile terminals
Wong et al. Small antennas in wireless communications
Wong et al. Small-size LTE/WWAN tablet device antenna with two hybrid feeds
Wong et al. Half-loop frame antenna for the LTE metal-casing tablet device
Wong et al. Small-size LTE/WWAN printed loop antenna with an inductively coupled branch strip for bandwidth enhancement in the tablet computer
Wong et al. Low-profile dual-wideband inverted-T open slot antenna for the LTE/WWAN tablet computer with a metallic frame
Samsuzzaman et al. A semicircular shaped super wideband patch antenna with high bandwidth dimension ratio
Wong et al. Passive reconfigurable triple-wideband antenna for LTE tablet computer
Wong et al. Bandwidth enhancement of small-size planar tablet computer antenna using a parallel-resonant spiral slit
Wong et al. Small-size stacked inverted-F antenna with two hybrid shorting strips for the LTE/WWAN tablet device
Rezaeieh et al. Bandwidth and directivity enhancement of loop antenna by nonperiodic distribution of mu-negative metamaterial unit cells
Wong et al. Triple-wideband open-slot antenna for the LTE metal-framed tablet device
Wong et al. Internal eight‐band WWAN/LTE handset antenna using loop shorting strip and chip‐capacitor‐loaded feeding strip for bandwidth enhancement
Duan et al. Dual‐band and enhanced‐isolation MIMO antenna with L‐shaped meta‐rim extended ground stubs for 5G mobile handsets
Lin et al. Low‐profile multibranch monopole antenna with integrated matching circuit for LTE/WWAN/WLAN operation in the tablet computer
CN104919655A (en) Mimo antenna and wireless device
Wang et al. Compact meander T‐shaped monopole antenna for dual‐band WLAN applications
Boldaji et al. Method of isolating and tuning the two dominant modes of a printed inverted-F antenna
Sung Simple inverted‐F antenna based on independent control of resonant frequency for LTE/wireless wide area network applications
Lee et al. Compact Penta‐Band Dual ZOR Antenna for Mobile Applications
Jiang et al. A CMOS UWB on-chip antenna with a MIM capacitor loading AMC
Gnanamurugan et al. Gain and directivity Enhancement of Rectangular Microstrip patch Antenna using HFSS