Akatsu et al., 2015 - Google Patents
Representative indentation elastic modulus evaluated by unloading of nanoindentation made with a point sharp indenterAkatsu et al., 2015
- Document ID
- 1252476175963510932
- Author
- Akatsu T
- Numata S
- Demura T
- Shinoda Y
- Wakai F
- Publication year
- Publication venue
- Mechanics of Materials
External Links
Snippet
The conventional method to extract elastic modulus from the nanoindentation on isotropic linearly elastic solids is based on Sneddon's solution (1965). However, it is known that the solution is valid only for incompressive elastic solids with the Poisson's ratio ν of 0.5. This …
- 238000007373 indentation 0 title abstract description 50
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/025—Geometry of the test
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/06—Indicating or recording means; Sensing means
- G01N2203/0617—Electrical or magnetic indicating, recording or sensing means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/026—Specifications of the specimen
- G01N2203/0286—Miniature specimen; Testing on micro-regions of a specimen
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N3/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N3/40—Investigating hardness or rebound hardness
- G01N3/42—Investigating hardness or rebound hardness by performing impressions under a steady load by indentors, e.g. sphere, pyramid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/0202—Control of the test
- G01N2203/0212—Theories, calculations
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0058—Kind of property studied
- G01N2203/0076—Hardness, compressibility or resistance to crushing
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/0202—Control of the test
- G01N2203/021—Treatment of the signal; Calibration
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/02—Details not specific for a particular testing method
- G01N2203/026—Specifications of the specimen
- G01N2203/0262—Shape of the specimen
- G01N2203/0278—Thin specimens
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2203/00—Investigating strength properties of solid materials by application of mechanical stress
- G01N2203/0014—Type of force applied
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/24—Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N25/00—Investigating or analyzing materials by the use of thermal means
- G01N25/18—Investigating or analyzing materials by the use of thermal means by investigating thermal conductivity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/14—Measuring force or stress in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress in general
- G01L1/20—Measuring force or stress in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electro-kinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F3/00—Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
- G06F3/01—Input arrangements or combined input and output arrangements for interaction between user and computer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by the preceding groups
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N11/00—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties
- G01N11/10—Investigating flow properties of materials, e.g. viscosity, plasticity; Analysing materials by determining flow properties by moving a body within the material
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, e.g. due to impact, work, mechanical power, or torque, adapted for special purposes
- G01L5/0047—Apparatus for, or methods of, measuring force, e.g. due to impact, work, mechanical power, or torque, adapted for special purposes measuring forces due to residual stresses
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Phani et al. | A critical assessment of the effect of indentation spacing on the measurement of hardness and modulus using instrumented indentation testing | |
Fischer-Cripps | Critical review of analysis and interpretation of nanoindentation test data | |
Zhao et al. | A new approach to measure the elastic–plastic properties of bulk materials using spherical indentation | |
Bocciarelli et al. | Parameter identification in anisotropic elastoplasticity by indentation and imprint mapping | |
Fischer-Cripps | A simple phenomenological approach to nanoindentation creep | |
Pelegri et al. | Nanoindentation on soft film/hard substrate and hard film/soft substrate material systems with finite element analysis | |
Xu et al. | Finite element analysis of substrate effects on indentation behaviour of thin films | |
Chudoba et al. | Steps towards a mechanical modeling of layered systems | |
Gadelrab et al. | Densification modeling of fused silica under nanoindentation | |
Useinov et al. | Scratch hardness evaluation with in-situ pile-up effect estimation | |
Bocciarelli et al. | Indentation and imprint mapping method for identification of residual stresses | |
Akatsu et al. | Representative indentation elastic modulus evaluated by unloading of nanoindentation made with a point sharp indenter | |
Bull | A simple method for the assessment of the contact modulus for coated systems | |
Buljak et al. | Identification of residual stresses by instrumented elliptical indentation and inverse analysis | |
Xiao et al. | Theoretical model for determining elastic modulus of ceramic materials by nanoindentation | |
Bouzakis et al. | An accurate and fast approach for determining materials stress–strain curves by nanoindentation and its FEM-based simulation | |
Huang et al. | Uncertainties in the representative indentation stress and strain using spherical nanoindentation | |
Wald et al. | Determining the elastic modulus of compliant thin films supported on substrates from flat punch indentation measurements | |
Ma et al. | Method for identifying Vickers hardness by instrumented indentation curves with Berkovich/Vickers indenter | |
Huang et al. | Mechanical characterization of thin film materials with nanoindentation measurements and FE analysis | |
Feng et al. | Young’s modulus measurement using a simplified transparent indenter measurement technique | |
Lee et al. | A numerical approach to indentation technique to evaluate material properties of film-on-substrate systems | |
Larsson | On the determination of biaxial residual stress fields from global indentation quantities | |
Gruber | Accurate data reduction for the uniaxial compression test | |
Perepelkin et al. | Evaluation of elastic and adhesive properties of solids by depth-sensing indentation |