Guo et al., 2022 - Google Patents
Development of a single-wavelength airborne bathymetric LiDAR: System design and data processingGuo et al., 2022
View PDF- Document ID
- 12520629521921088624
- Author
- Guo K
- Li Q
- Wang C
- Mao Q
- Liu Y
- Zhu J
- Wu A
- Publication year
- Publication venue
- ISPRS Journal of Photogrammetry and Remote Sensing
External Links
Snippet
Airborne laser bathymetry (ALB) is employed to measure shallow depth water by using a high sampling rate and point density. Thus, the problems of using traditional detection methods in inaccessible areas can be avoided. This study focuses on practical solutions for …
- 238000011161 development 0 title description 8
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/48—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
- G01S7/4804—Auxiliary means for detecting or identifying lidar signals or the like, e.g. laser illuminators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/88—Radar or analogous systems specially adapted for specific applications
- G01S13/89—Radar or analogous systems specially adapted for specific applications for mapping or imaging
- G01S13/90—Radar or analogous systems specially adapted for specific applications for mapping or imaging using synthetic aperture techniques, e.g. correcting range migration errors
- G01S13/9035—Particular SAR processing techniques not provided for elsewhere, e.g. squint mode, doppler beam-sharpening mode, spotlight mode, bistatic SAR, inverse SAR
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S7/00—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
- G01S7/02—Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
- G01S7/28—Details of pulse systems
- G01S7/285—Receivers
- G01S7/292—Extracting wanted echo-signals
- G01S7/2921—Extracting wanted echo-signals based on data belonging to one radar period
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S17/00—Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
- G01S17/88—Lidar systems specially adapted for specific applications
- G01S17/95—Lidar systems specially adapted for specific applications for meteorological use
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S15/00—Systems using the reflection or reradiation of acoustic waves, e.g. sonar systems
- G01S15/88—Sonar systems specially adapted for specific applications
- G01S15/885—Meteorological systems
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S3/00—Direction-finders for determining the direction from which infrasonic, sonic, ultrasonic, or electromagnetic waves, or particle emission, not having a directional significance, are being received
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S13/00—Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
- G01S13/86—Combinations of radar systems with non-radar systems, e.g. sonar, direction finder
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using infra-red, visible or ultra-violet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V1/00—Seismology; Seismic or acoustic prospecting or detecting
- G01V1/38—Seismology; Seismic or acoustic prospecting or detecting specially adapted for water-covered areas
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01V—GEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS
- G01V3/00—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
- G01V3/12—Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01S—RADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
- G01S5/00—Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Guo et al. | Development of a single-wavelength airborne bathymetric LiDAR: System design and data processing | |
Li et al. | Airborne LiDAR: state-of-the-art of system design, technology and application | |
Churnside | Review of profiling oceanographic lidar | |
Collin et al. | Mapping the shallow water seabed habitat with the SHOALS | |
Tulldahl et al. | Classification of aquatic macrovegetation and substrates with airborne lidar | |
CN111965608B (en) | Satellite-borne ocean laser radar detection capability assessment method based on chlorophyll concentration of water body | |
CN107976686B (en) | Multi-field angle ocean laser radar and field angle preference method thereof | |
Avery et al. | CALIOP V4 cloud thermodynamic phase assignment and the impact of near-nadir viewing angles | |
Steinvall et al. | Experimental evaluation of an airborne depth-sounding lidar | |
Brown et al. | Remote sensing of capelin and other biological features in the North Pacific using lidar and video technology | |
CN107255806B (en) | A method of fitting inverting sea level horizontal air extinction coefficient | |
Catalán et al. | Microwave backscattering from surf zone waves | |
WO2015177172A1 (en) | Joint constraints imposed on multiband time transitivity and doppler-effect differences, for separating, characterizing, and locating sound sources via passive acoustics | |
Ramnath et al. | CZMIL (Coastal Zone Mapping and Imaging Lidar) bathymetric performance in diverse littoral zones | |
Zhao et al. | An improved water-land discriminator using laser waveform amplitudes and point cloud elevations of airborne LIDAR | |
Liu et al. | Adaptive clustering-based method for ICESat-2 sea ice retrieval | |
Wandinger et al. | Cloud top heights and aerosol layer properties from EarthCARE lidar observations: the A-CTH and A-ALD products | |
Bolbasova et al. | Atmospheric research for adaptive optics | |
Kuus | Bottom tracking issues and recognition thereof using SHOAL-300 green laser beam in dense fields of Zostera Marina and Laminaria Sp. | |
Bailly et al. | Airborne LiDAR methods applied to riverine environments | |
Potter et al. | Ambient noise imaging in warm shallow seas; second-order moment and model-based imaging algorithms | |
Liu et al. | Classification of laser footprint based on random forest in mountainous area using GLAS full-waveform features | |
Hu | Theory and technology of laser imaging based target detection | |
Ramnath et al. | Predicted bathymetric lidar performance of coastal zone mapping and imaging lidar (CZMIL) | |
CN113985437A (en) | Staring type rapid hyperspectral pulsed laser radar system |