Nothing Special   »   [go: up one dir, main page]

Heo et al., 2006 - Google Patents

Tactile sensor arrays using fiber Bragg grating sensors

Heo et al., 2006

Document ID
12514025574839842856
Author
Heo J
Chung J
Lee J
Publication year
Publication venue
Sensors and Actuators A: Physical

External Links

Snippet

This paper describes two kinds of 3× 3 force sensor arrays using fiber Bragg gratings (FBG) and transducers for tactile sensation to detect a distributed normal force. One array is developed for a large area tactile sensor that has good sensitivity but low spatial resolution …
Continue reading at www.sciencedirect.com (other versions)

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress in general
    • G01L1/20Measuring force or stress in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electro-kinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electro-kinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges
    • G01L1/2206Special supports with preselected places to mount the resistance strain gauges; Mounting of supports
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress in general
    • G01L1/24Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet
    • G01L1/242Measuring force or stress in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infra-red, visible light, ultra-violet the material being an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/26Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light
    • G01D5/32Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light
    • G01D5/34Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells
    • G01D5/353Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable characterised by optical transfer means, i.e. using infra-red, visible, or ultra-violet light with attenuation or whole or partial obturation of beams of light the beams of light being detected by photocells influencing the transmission properties of an optical fibre
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress in general
    • G01L1/14Measuring force or stress in general by measuring variations in capacitance or inductance of electrical elements, e.g. by measuring variations of frequency of electrical oscillators
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L5/00Apparatus for, or methods of, measuring force, e.g. due to impact, work, mechanical power, or torque, adapted for special purposes
    • G01L5/16Apparatus for, or methods of, measuring force, e.g. due to impact, work, mechanical power, or torque, adapted for special purposes for measuring several components of force
    • G01L5/161Apparatus for, or methods of, measuring force, e.g. due to impact, work, mechanical power, or torque, adapted for special purposes for measuring several components of force using variations in ohmic resistance
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L9/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by electric or magnetic pressure-sensitive elements; Transmitting or indicating the displacement of mechanical pressure-sensitive elements, used to measure the steady or quasi-steady pressure of a fluid or fluent solid material by electric or magnetic means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L11/00Measuring steady or quasi-steady pressure of a fluid or a fluent solid material by means not provided for in group G01L7/00 or G01L9/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L3/00Measuring torque, work, mechanical power, or mechanical efficiency in general
    • G01L3/02Rotary-transmission dynamometers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L19/00Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges

Similar Documents

Publication Publication Date Title
Heo et al. Tactile sensor arrays using fiber Bragg grating sensors
Lun et al. Real-time surface shape sensing for soft and flexible structures using fiber Bragg gratings
US11662228B2 (en) Real-time surface shape sensing for flexible structures
Leal-Junior et al. Diaphragm-embedded optical fiber sensors: A review and tutorial
Xiong et al. Six-dimensional force/torque sensor based on fiber Bragg gratings with low coupling
Kanellos et al. Two dimensional polymer-embedded quasi-distributed FBG pressure sensor for biomedical applications
Liang et al. Multi-component FBG-based force sensing systems by comparison with other sensing technologies: A review
Zhang et al. Soft fiber optic sensors for precision measurement of shear stress and pressure
US20050232532A1 (en) Polymer based distributive waveguide sensor for pressure and shear measurement
Zhao et al. Differential FBG sensor for temperature-compensated high-pressure (or displacement) measurement
WO2004104539A1 (en) A fiber optic force sensor for measuring shear force
Saccomandi et al. Feedforward Neural Network for Force Coding of an MRI‐Compatible Tactile Sensor Array Based on Fiber Bragg Grating
Al-Mai et al. A compliant 3-axis fiber-optic force sensor for biomechanical measurement
Kim et al. Development of a 6-DoF FBG force–moment sensor for a haptic interface with minimally invasive robotic surgery
EP3717993A1 (en) Elastomeric lightguide coupling for continuous position localization in 1,2, and 3d
Du et al. Soft prosthetic forefinger tactile sensing via a string of intact single mode optical fiber
Manuvinakurake et al. Design, fabrication and testing of fiber Bragg grating based fixed guided beam pressure sensor
Tripicchio et al. On the integration of FBG sensing technology into robotic grippers
Ngoi et al. Enhanced lateral pressure tuning of fiber Bragg gratings by polymer packaging
Samuel et al. Fiber Bragg grating tactile sensor for imaging
Lai et al. Design and validation of a miniature fiber Bragg grating-enabled high-sensitivity torque sensor
Tjin et al. Fiber Bragg grating based shear-force sensor: Modeling and testing
Chiang et al. Enhanced sensitivity of bare FBG pressure sensor based on oval-shaped 3D printed structure
Zhang et al. Three-dimensional force detection and decoupling of a fiber grating sensor for a humanoid prosthetic hand
Ceyssens et al. A low-cost and highly integrated fiber optical pressure sensor system