Kong et al., 2018 - Google Patents
Spectral–spatial feature extraction for HSI classification based on supervised hypergraph and sample expanded CNNKong et al., 2018
View PDF- Document ID
- 1256959484348668529
- Author
- Kong Y
- Wang X
- Cheng Y
- Publication year
- Publication venue
- IEEE journal of selected topics in applied earth observations and remote sensing
External Links
Snippet
Hyperspectral image (HSI) classification remains a challenging problem due to unique characteristics of HSI data (such as numerous bands and strong correlations in the spectral and spatial domains) and small sample size. To address such concerns, we propose a novel …
- 238000000605 extraction 0 title abstract description 17
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6268—Classification techniques relating to the classification paradigm, e.g. parametric or non-parametric approaches
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6232—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods
- G06K9/6247—Extracting features by transforming the feature space, e.g. multidimensional scaling; Mappings, e.g. subspace methods based on an approximation criterion, e.g. principal component analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6217—Design or setup of recognition systems and techniques; Extraction of features in feature space; Clustering techniques; Blind source separation
- G06K9/6256—Obtaining sets of training patterns; Bootstrap methods, e.g. bagging, boosting
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6267—Classification techniques
- G06K9/6279—Classification techniques relating to the number of classes
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/52—Extraction of features or characteristics of the image by deriving mathematical or geometrical properties from the whole image
- G06K9/527—Scale-space domain transformation, e.g. with wavelet analysis
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6201—Matching; Proximity measures
- G06K9/6202—Comparing pixel values or logical combinations thereof, or feature values having positional relevance, e.g. template matching
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/36—Image preprocessing, i.e. processing the image information without deciding about the identity of the image
- G06K9/46—Extraction of features or characteristics of the image
- G06K9/4671—Extracting features based on salient regional features, e.g. Scale Invariant Feature Transform [SIFT] keypoints
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/68—Methods or arrangements for recognition using electronic means using sequential comparisons of the image signals with a plurality of references in which the sequence of the image signals or the references is relevant, e.g. addressable memory
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6296—Graphical models, e.g. Bayesian networks
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/62—Methods or arrangements for recognition using electronic means
- G06K9/6288—Fusion techniques, i.e. combining data from various sources, e.g. sensor fusion
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00221—Acquiring or recognising human faces, facial parts, facial sketches, facial expressions
- G06K9/00268—Feature extraction; Face representation
- G06K9/00281—Local features and components; Facial parts ; Occluding parts, e.g. glasses; Geometrical relationships
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06K—RECOGNITION OF DATA; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
- G06K9/00—Methods or arrangements for reading or recognising printed or written characters or for recognising patterns, e.g. fingerprints
- G06K9/00624—Recognising scenes, i.e. recognition of a whole field of perception; recognising scene-specific objects
- G06K9/0063—Recognising patterns in remote scenes, e.g. aerial images, vegetation versus urban areas
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N3/00—Computer systems based on biological models
- G06N3/02—Computer systems based on biological models using neural network models
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06F—ELECTRICAL DIGITAL DATA PROCESSING
- G06F17/00—Digital computing or data processing equipment or methods, specially adapted for specific functions
- G06F17/30—Information retrieval; Database structures therefor; File system structures therefor
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06N—COMPUTER SYSTEMS BASED ON SPECIFIC COMPUTATIONAL MODELS
- G06N99/00—Subject matter not provided for in other groups of this subclass
- G06N99/005—Learning machines, i.e. computer in which a programme is changed according to experience gained by the machine itself during a complete run
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/10—Image acquisition modality
- G06T2207/10024—Color image
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING; COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/40—Analysis of texture
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Kong et al. | Spectral–spatial feature extraction for HSI classification based on supervised hypergraph and sample expanded CNN | |
Ding et al. | Semi-supervised locality preserving dense graph neural network with ARMA filters and context-aware learning for hyperspectral image classification | |
Dong et al. | Weighted feature fusion of convolutional neural network and graph attention network for hyperspectral image classification | |
Wang et al. | Adaptive spectral–spatial multiscale contextual feature extraction for hyperspectral image classification | |
Cao et al. | Hyperspectral image classification with convolutional neural network and active learning | |
Ding et al. | AF2GNN: Graph convolution with adaptive filters and aggregator fusion for hyperspectral image classification | |
Cai et al. | Graph convolutional subspace clustering: A robust subspace clustering framework for hyperspectral image | |
Wang et al. | Adaptive DropBlock-enhanced generative adversarial networks for hyperspectral image classification | |
Sun et al. | SpaSSA: Superpixelwise adaptive SSA for unsupervised spatial–spectral feature extraction in hyperspectral image | |
Wang et al. | Salient band selection for hyperspectral image classification via manifold ranking | |
Zhao et al. | Joint deep convolutional feature representation for hyperspectral palmprint recognition | |
Liu et al. | Deep multigrained cascade forest for hyperspectral image classification | |
Li et al. | Hyperspectral image classification using functional data analysis | |
Cui et al. | Superpixel-based extended random walker for hyperspectral image classification | |
Lv et al. | Classification of hyperspectral remote sensing image using hierarchical local-receptive-field-based extreme learning machine | |
Chu et al. | Hyperspectral image classification based on discriminative locality preserving broad learning system | |
Zuo et al. | FSL-EGNN: Edge-labeling graph neural network for hyperspectral image few-shot classification | |
Cao et al. | Cascaded dual-scale crossover network for hyperspectral image classification | |
Zhao et al. | Life-long learning with continual spectral-spatial feature distillation for hyperspectral image classification | |
Li et al. | Hyperspectral image recognition using SVM combined deep learning | |
Feng et al. | Dual-graph convolutional network based on band attention and sparse constraint for hyperspectral band selection | |
Huang et al. | Local linear spatial–spectral probabilistic distribution for hyperspectral image classification | |
CN114155443A (en) | Hyperspectral image classification method based on multi-receptive-field attention network | |
Li et al. | Adaptive mask sampling and manifold to Euclidean subspace learning with distance covariance representation for hyperspectral image classification | |
Chen et al. | Semi-Supervised Adaptive Pseudo-Label Feature Learning for Hyperspectral Image Classification in Internet of Things |