Tempelhahn et al., 2016 - Google Patents
Shutter-less calibration of uncooled infrared camerasTempelhahn et al., 2016
View PDF- Document ID
- 12362987718566254291
- Author
- Tempelhahn A
- Budzier H
- Krause V
- Gerlach G
- Publication year
- Publication venue
- Journal of Sensors and Sensor Systems
External Links
Snippet
Infrared (IR) cameras based on microbolometer focal plane arrays (FPAs) are the most widely used cameras in thermography. New fields of applications like handheld devices and small distributed sensors benefit from the latest sensor improvements in terms of cost and …
- 238000000034 method 0 abstract description 19
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/10—Radiation pyrometry using electric radiation detectors
- G01J5/20—Radiation pyrometry using electric radiation detectors using resistors, thermistors, or semi-conductors sensitive to radiation
- G01J5/22—Electrical features
- G01J5/24—Use of a specially-adapted circuit, e.g. bridge circuit
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/08—Optical features
- G01J5/0803—Optical elements not provided otherwise, e.g. optical manifolds, gratings, holograms, cubic beamsplitters, prisms, particular coatings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation
- G01J5/061—Arrangements for eliminating effects of disturbing radiation using cooling or thermostating of parts of the apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/06—Arrangements for eliminating effects of disturbing radiation
- G01J2005/067—Compensating for environment parameters
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/02—Details
- G01J5/04—Casings Mountings
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/50—Radiation pyrometry using techniques specified in the subgroups below
- G01J5/52—Radiation pyrometry using techniques specified in the subgroups below using comparison with reference sources, e.g. disappearing-filament pyrometer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/10—Radiation pyrometry using electric radiation detectors
- G01J5/12—Radiation pyrometry using electric radiation detectors using thermoelectric elements, e.g. thermocouples
- G01J5/14—Electrical features
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/335—Transforming light or analogous information into electric information using solid-state image sensors [SSIS]
- H04N5/357—Noise processing, e.g. detecting, correcting, reducing or removing noise
- H04N5/365—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response
- H04N5/3651—Noise processing, e.g. detecting, correcting, reducing or removing noise applied to fixed-pattern noise, e.g. non-uniformity of response for non-uniformity detection and correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J2005/0048—Calibrating; Correcting
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J5/0003—Radiation pyrometry for sensing the radiant heat transfer of samples, e.g. emittance meter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J5/00—Radiation pyrometry
- G01J2005/0077—Imaging
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/30—Transforming light or analogous information into electric information
- H04N5/33—Transforming infra-red radiation
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N5/00—Details of television systems
- H04N5/222—Studio circuitry; Studio devices; Studio equipment; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, TV cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
- H04N5/225—Television cameras; Cameras comprising an electronic image sensor, e.g. digital cameras, video cameras, video cameras, camcorders, webcams, camera modules for embedding in other devices, e.g. mobile phones, computers or vehicles
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01J—MEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRA-RED, VISIBLE OR ULTRA-VIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
- G01J1/00—Photometry, e.g. photographic exposure meter
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01K—MEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
- G01K17/00—Measuring quantity of heat
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tempelhahn et al. | Shutter-less calibration of uncooled infrared cameras | |
US6610984B2 (en) | Method and apparatus for correction of microbolometer output | |
US6891160B2 (en) | Method and apparatus for temperature compensation of an uncooled focal plane array | |
US8080779B2 (en) | Device for detecting infrared radiation comprising a resistive imaging bolometer, a system comprising an array of such bolometers and a method for reading an imaging bolometer integrated into such a system | |
US6690013B2 (en) | Apparatus and method for compensating for pixel non-uniformity in a bolometer | |
US8080793B2 (en) | Device for detecting infrared radiation comprising a resistive imaging bolometer, a system comprising an array of such bolometers and a method for reading an imaging bolometer integrated into such a system | |
JP2008185465A (en) | Method and apparatus for compensating infrared sensor for temperature | |
Lv et al. | Uncooled microbolometer infrared focal plane array without substrate temperature stabilization | |
Riou et al. | Nonuniformity correction and thermal drift compensation of thermal infrared camera | |
KR20060064615A (en) | Radiometry using an uncooled microbolometer detector | |
JP2011510275A (en) | Thermal camera | |
US20170089764A1 (en) | Multi-reference correlated double sampling detection method and microbolometer using the same | |
Bieszczad et al. | Method of detectors offset correction in thermovision camera with uncooled microbolometric focal plane array | |
Meyer et al. | Amber's uncooled microbolometer LWIR camera | |
De Los Ríos et al. | The infrared camera prototype characterization for the JEM-EUSO space mission | |
Tempelhahn et al. | Development of a shutterless calibration process for microbolometer-based infrared measurement systems | |
Jo et al. | TEC-less ROIC with self-bias equalization for microbolometer FPA | |
Tempelhahn et al. | Improving the shutter-less compensation method for TEC-less microbolometer-based infrared cameras | |
Jin et al. | Infrared nonuniformity correction and radiometric calibration technology using U-shaped blackbody | |
Fieque et al. | 320x240 uncooled microbolometer 2D array for radiometric and process control applications | |
Orżanowski et al. | Test and evaluation of reference-based nonuniformity correction methods for microbolometer infrared detectors | |
Bünger et al. | Traceability of a ccd-camera system for high-temperature measurements | |
Krupiński et al. | Non-uniformity correction with temperature influence compensation in microbolometer detector | |
Kaplinsky et al. | Recent advances in the development of a multiwavelength imaging pyrometer | |
US11125625B2 (en) | Microbolometer readout circuit and calibration method using the same |